Do you want to publish a course? Click here

Random CNFs are Hard for Cutting Planes

104   0   0.0 ( 0 )
 Added by Robert Robere
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

The random k-SAT model is the most important and well-studied distribution over k-SAT instances. It is closely connected to statistical physics; it is used as a testbench for satisfiability algorithms, and average-case hardness over this distribution has also been linked to hardness of approximation via Feiges hypothesis. We prove that any Cutting Planes refutation for random k-SAT requires exponential size, for k that is logarithmic in the number of variables, in the (interesting) regime where the number of clauses guarantees that the formula is unsatisfiable with high probability.



rate research

Read More

We prove essentially tight lower bounds, conditionally to the Exponential Time Hypothesis, for two fundamental but seemingly very different cutting problems on surface-embedded graphs: the Shortest Cut Graph problem and the Multiway Cut problem. A cut graph of a graph $G$ embedded on a surface $S$ is a subgraph of $G$ whose removal from $S$ leaves a disk. We consider the problem of deciding whether an unweighted graph embedded on a surface of genus $g$ has a cut graph of length at most a given value. We prove a time lower bound for this problem of $n^{Omega(g/log g)}$ conditionally to ETH. In other words, the first $n^{O(g)}$-time algorithm by Erickson and Har-Peled [SoCG 2002, Discr. Comput. Geom. 2004] is essentially optimal. We also prove that the problem is W[1]-hard when parameterized by the genus, answering a 17-year old question of these authors. A multiway cut of an undirected graph $G$ with $t$ distinguished vertices, called terminals, is a set of edges whose removal disconnects all pairs of terminals. We consider the problem of deciding whether an unweighted graph $G$ has a multiway cut of weight at most a given value. We prove a time lower bound for this problem of $n^{Omega(sqrt{gt + g^2+t}/log(g+t))}$, conditionally to ETH, for any choice of the genus $gge0$ of the graph and the number of terminals $tge4$. In other words, the algorithm by the second author [Algorithmica 2017] (for the more general multicut problem) is essentially optimal; this extends the lower bound by the third author [ICALP 2012] (for the planar case). Reductions to planar problems usually involve a grid-like structure. The main novel idea for our results is to understand what structures instead of grids are needed if we want to exploit optimally a certain value $g$ of the genus.
Assuming that the Permanent polynomial requires algebraic circuits of exponential size, we show that the class VNP does not have efficiently computable equations. In other words, any nonzero polynomial that vanishes on the coefficient vectors of all polynomials in the class VNP requires algebraic circuits of super-polynomial size. In a recent work of Chatterjee and the authors (FOCS 2020), it was shown that the subclasses of VP and VNP consisting of polynomials with bounded integer coefficients do have equations with small algebraic circuits. Their work left open the possibility that these results could perhaps be extended to all of VP or VNP. The results in this paper show that assuming the hardness of Permanent, at least for VNP, allowing polynomials with large coefficients does indeed incur a significant blow up in the circuit complexity of equations.
We analyze the computational complexity of the popular computer games Threes!, 1024!, 2048 and many of their variants. For most kno
We introduce and develop a new semi-algebraic proof system, called Stabbing Planes that is in the style of DPLL-based modern SAT solvers. As with DPLL, there is only one rule: the current polytope can be subdivided by branching on an inequality and its integer negation. That is, we can (nondeterministically choose) a hyperplane a x geq b with integer coefficients, which partitions the polytope into three pieces: the points in the polytope satisfying a x geq b, the points satisfying a x leq b-1, and the middle slab b-1 < a x < b. Since the middle slab contains no integer points it can be safely discarded, and the algorithm proceeds recursively on the other two branches. Each path terminates when the current polytope is empty, which is polynomial-time checkable. Among our results, we show somewhat surprisingly that Stabbing Planes can efficiently simulate Cutting Planes, and moreover, is strictly stronger than Cutting Planes under a reasonable conjecture. We prove linear lower bounds on the rank of Stabbing Planes refutations, by adapting a lifting argument in communication complexity.
We derive upper and lower bounds on the degree $d$ for which the Lovasz $vartheta$ function, or equivalently sum-of-squares proofs with degree two, can refute the existence of a $k$-coloring in random regular graphs $G_{n,d}$. We show that this type of refutation fails well above the $k$-colorability transition, and in particular everywhere below the Kesten-Stigum threshold. This is consistent with the conjecture that refuting $k$-colorability, or distinguishing $G_{n,d}$ from the planted coloring model, is hard in this region. Our results also apply to the disassortative case of the stochastic block model, adding evidence to the conjecture that there is a regime where community detection is computationally hard even though it is information-theoretically possible. Using orthogonal polynomials, we also provide explicit upper bounds on $vartheta(overline{G})$ for regular graphs of a given girth, which may be of independent interest.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا