We study the quantum Hall effect of Dirac fermions on the surface of a Wilson-Dirac type topological insulator thin film in the strong topological insulating phase. Although a magnetic field breaks time reversal symmetry of the bulk, the surface states can survive even in a strong field regime. We examine how the Landau levels of the surface states are affected by symmetry breaking perturbations.
We investigate a quantum well that consists of a thin topological insulator sandwiched between two trivial insulators. More specifically, we consider smooth interfaces between these different types of materials such that the interfaces host not only the chiral interface states, whose existence is dictated by the bulk-edge correspondence, but also massive Volkov-Pankratov states. We investigate possible hybridization between these interface states as a function of the width of the topological material and of the characteristic interface size. Most saliently, we find a strong qualitative difference between an extremely weak effect on the chiral interface states and a more common hybridization of the massive Volkov-Pankratov states that can be easily understood in terms of quantum tunneling in the framework of the model of a (Dirac) quantum well we introduce here.
The concept of topological insulator (TI) has introduced a new point of view to condensed-matter physics, relating a priori unrelated subfields such as quantum (spin, anomalous) Hall effects, spin-orbit coupled materials, some classes of nodal superconductors and superfluid $^3$He, etc. From a technological point of view, topological insulator is expected to serve as a platform for realizing dissipationless transport in a non-superconducting context. The topological insulator exhibits a gapless surface state with a characteristic conic dispersion (a surface Dirac cone). Here, we review peculiar finite-size effects applicable to such surface states in TI nanostructures. We highlight the specific electronic properties of TI nanowires and nanoparticles, and in this context contrast the cases of weak and strong TIs. We study robustness of the surface and the bulk of TIs against disorder, addressing the physics of Dirac and Weyl semimetals as a new perspective of research in the field.
We demonstrate evidences of electronic transport via topological Dirac surface states in a thin film of strained HgTe. At high perpendicular magnetic fields, we show that the electron transport reaches the quantum Hall regime with vanishing resistance. Furthermore, quantum Hall transport spectroscopy reveals energy splittings of relativistic Landau levels specific to coupled Dirac surface states. This study provides new insights in the quantum Hall effect of topological insulator (TI) slabs, in the cross-over regime between two- and three-dimensional TIs, and in the relevance of thin TI films to explore novel circuit functionalities in spintronics and quantum nanoelectronics.
The non-trivial topology of the three-dimensional (3D) topological insulator (TI) dictates the appearance of gapless Dirac surface states. Intriguingly, when a 3D TI is made into a nanowire, a gap opens at the Dirac point due to the quantum confinement, leading to a peculiar Dirac sub-band structure. This gap is useful for, e.g., future Majorana qubits based on TIs. Furthermore, these Dirac sub-bands can be manipulated by a magnetic flux and are an ideal platform for generating stable Majorana zero modes (MZMs), which play a key role in topological quantum computing. However, direct evidence for the Dirac sub-bands in TI nanowires has not been reported so far. Here we show that by growing very thin ($sim$40-nm diameter) nanowires of the bulk-insulating topological insulator (Bi$_{1-x}$Sb$_x$)$_2$Te$_3$ and by tuning its chemical potential across the Dirac point with gating, one can unambiguously identify the Dirac sub-band structure. Specifically, the resistance measured on gate-tunable four-terminal devices was found to present non-equidistant peaks as a function of the gate voltage, which we theoretically show to be the unique signature of the quantum-confined Dirac surface states. These TI nanowires open the way to address the topological mesoscopic physics, and eventually the Majorana physics when proximitised by an $s$-wave superconductor.
We investigate interaction effects in three dimensional weak topological insulators (TI) with an even number of Dirac cones on the surface. We find that the surface states can be gapped by a surface charge density wave (CDW) order without breaking the time-reversal symmetry. In this sense, time reversal symmetry alone can not robustly protect the weak TI state in the presence of interactions. If the translational symmetry is additionally imposed in the bulk, a topologically non-trivial weak TI state can be obtained with helical edge states on the CDW domain walls. In other words, a CDW domain wall on the surface is topologically equivalent to the edge of a two-dimensional quantum spin Hall insulator. Therefore, the surface state of a weak topological insulator with translation symmetry breaking on the surface has a half quantum spin Hall effect, in the same way that the surface state of a strong topological insulator with time-reversal symmetry breaking on the surface has a half quantum Hall effect. The on-site and nearest neighbor interactions are investigated in the mean field level and the phase diagram for the surface states of weak topological insulators is obtained.