Do you want to publish a course? Click here

On the universal property of Waldhausens K-theory

91   0   0.0 ( 0 )
 Added by Wolfgang Steimle
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

In this note we show that Waldhausens K-theory functor from Waldhausen categories to spaces has a universal property: It is the target of the universal global Euler characteristic, in other words, the additivization of the functor sending a Waldhausen category C to obj(C) . We also show that a large class of functors possesses such an additivization.



rate research

Read More

174 - George Raptis 2019
We show that the Waldhausen trace map $mathrm{Tr}_X colon A(X) to QX_+$, which defines a natural splitting map from the algebraic $K$-theory of spaces to stable homotopy, is natural up to emph{weak} homotopy with respect to transfer maps in algebraic $K$-theory and Becker-Gottlieb transfer maps respectively.
We define a $K$-theory for pointed right derivators and show that it agrees with Waldhausen $K$-theory in the case where the derivator arises from a good Waldhausen category. This $K$-theory is not invariant under general equivalences of derivators, but only under a stronger notion of equivalence that is defined by considering a simplicial enrichment of the category of derivators. We show that derivator $K$-theory, as originally defined, is the best approximation to Waldhausen $K$-theory by a functor that is invariant under equivalences of derivators.
For G a finite group and X a G-space on which a normal subgroup A acts trivially, we show that the G-equivariant K-theory of X decomposes as a direct sum of twisted equivariant K-theories of X parametrized by the orbits of the conjugation action of G on the irreducible representations of A. The twists are group 2-cocycles which encode the obstruction of lifting an irreducible representation of A to the subgroup of G which fixes the isomorphism class of the irreducible representation.
For a finite volume geodesic polyhedron P in hyperbolic 3-space, with the property that all interior angles between incident faces are integral submultiples of Pi, there is a naturally associated Coxeter group generated by reflections in the faces. Furthermore, this Coxeter group is a lattice inside the isometry group of hyperbolic 3-space, with fundamental domain the original polyhedron P. In this paper, we provide a procedure for computing the lower algebraic K-theory of the integral group ring of such Coxeter lattices in terms of the geometry of the polyhedron P. As an ingredient in the computation, we explicitly calculate some of the lower K-groups of the dihedral groups and the product of dihedral groups with the cyclic group of order two.
There is an equivalence relation on the set of smooth maps of a manifold into the stable unitary group, defined using a Chern-Simons type form, whose equivalence classes form an abelian group under ordinary block sum of matrices. This construction is functorial, and defines a differential extension of odd K-theory, fitting into natural commutative diagrams and exact sequences involving K-theory and differential forms. To prove this we obtain along the way several results concerning even and odd Chern and Chern-Simons forms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا