Do you want to publish a course? Click here

Benefits of Resource Strategy for Sustainable Materials Research and Development

196   0   0.0 ( 0 )
 Added by Stephan Krohns Dr.
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Material and product life cycles are based on complex value chains of technology-specific elements. Resource strategy aspects of essential and strategic raw materials have a direct impact on applications of new functionalized materials or the development of novel products. Thus, an urgent challenge of modern materials science is to obtain information about the supply risk and environmental aspects of resource utilization, especially at an early stage of basic research. Combining the fields of materials science, industrial engineering and resource strategy enables a multidisciplinary research approach to identify specific risks within the value chain, aggregated as the so-called resource criticality. Here, we demonstrate a step-by-step criticality assessment in the sector of basic materials research for multifunctional hexagonal manganite YMnO3, which can be a candidate for future electronic systems. Raw material restrictions can be quantitatively identified, even at such an early stage of materials research, from eleven long-term indicators including our new developed Sector Competition Index. This approach for resource strategy for modern material science integrates two objective targets: reduced supply risk and enhanced environmental sustainability of new functionalized materials, showing drawbacks but also benefits towards a sustainable materials research and development.

rate research

Read More

91 - Nicola A. Spaldin 2017
Unless we change direction, we are likely to wind up where we are headed. (Ancient Chinese proverb)
In this study, we will discuss recent developments in risk management of the global financial and insurance business with respect to sustainable development. So far climate change aspects have been the dominant aspect in managing sustainability risks and opportunities, accompanied by the development of several legislative initiatives triggered by supervisory authorities. However, a sole concentration on these aspects misses out other important economic and social facets of sustainable development goals formulated by the UN. Such aspects have very recently come into the focus of the European Committee concerning the Solvency II project for the European insurance industry. Clearly the new legislative expectations can be better handled by larger insurance companies and holdings than by small- and medium-sized mutual insurance companies which are numerous in central Europe, due to their historic development starting in the late medieval ages and early modern times. We therefore also concentrate on strategies within the risk management of such small- and medium-sized enterprises that can be achieved without much effort, in particular those that are not directly related to climate change.
Layered two-dimensional (2D) semiconducting transition metal dichalcogenides (TMD) have been widely isolated, synthesized, and characterized recently. Numerous 2D materials are identified as the potential candidates as channel materials for future thin film technology due to their high mobility and the exhibiting bandgaps. While many TMD filed-effect transistors (FETs) have been widely demonstrated along with a significant progress to clearly understand the device physics, large contact resistance at metal/semiconductor interface still remain a challenge. From 2D device research point of view, how to minimize the Schottky barrier effects on contacts thus reduce the contact resistance of metals on 2D materials is very critical for the further development of the field. Here, we present a review of contact research on molybdenum disulfide and other TMD FETs from the fundamental understanding of metal-semiconductor interfaces on 2D materials. A clear contact research strategy on 2D semiconducting materials is developed for future high-performance 2D FETs with aggressively scaled dimensions.
Machine learning technologies are expected to be great tools for scientific discoveries. In particular, materials development (which has brought a lot of innovation by finding new and better functional materials) is one of the most attractive scientific fields. To apply machine learning to actual materials development, collaboration between scientists and machine learning is becoming inevitable. However, such collaboration has been restricted so far due to black box machine learning, in which it is difficult for scientists to interpret the data-driven model from the viewpoint of material science and physics. Here, we show a material development success story that was achieved by good collaboration between scientists and one type of interpretable (explainable) machine learning called factorized asymptotic Bayesian inference hierarchical mixture of experts (FAB/HMEs). Based on material science and physics, we interpreted the data-driven model constructed by the FAB/HMEs, so that we discovered surprising correlation and knowledge about thermoelectric material. Guided by this, we carried out actual material synthesis that led to identification of a novel spin-driven thermoelectric material with the largest thermopower to date.
95 - P. Nieves , S. Arapan , J. Maudes 2019
This paper describes the open Novamag database that has been developed for the design of novel Rare-Earth free/lean permanent magnets. The database software technologies, its friendly graphical user interface, advanced search tools and available data are explained in detail. Following the philosophy and standards of Materials Genome Initiative, it contains significant results of novel magnetic phases with high magnetocrystalline anisotropy obtained by three computational high-throughput screening approaches based on a crystal structure prediction method using an Adaptive Genetic Algorithm, tetragonally distortion of cubic phases and tuning known phases by doping. Additionally, it also includes theoretical and experimental data about fundamental magnetic material properties such as magnetic moments, magnetocrystalline anisotropy energy, exchange parameters, Curie temperature, domain wall width, exchange stiffness, coercivity and maximum energy product, that can be used in the study and design of new promising high-performance Rare-Earth free/lean permanent magnets. The results therein contained might provide some insights into the ongoing debate about the theoretical performance limits beyond Rare-Earth based magnets. Finally, some general strategies are discussed to design possible experimental routes for exploring most promising theoretical novel materials found in the database.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا