Filip showed that there are constants $C>0$ and $delta>0$ such that the number of special Lagrangian fibrations of volume $leq V$ in a generic twistor family of K3 surfaces is $Ccdot V^{20}+O(V^{20-delta})$. In this note, we show that $delta$ can be taken to be any number $0<delta<frac{4}{697633}$.
We develop a theory of twistor spaces for supersingular K3 surfaces, extending the analogy between supersingular K3 surfaces and complex analytic K3 surfaces. Our twistor spaces are obtained as relative moduli spaces of twisted sheaves on universal gerbes associated to the Brauer groups of supersingular K3 surfaces. In rank 0, this is a geometric incarnation of the Artin-Tate isomorphism. Twistor spaces give rise to curves in moduli spaces of twisted supersingular K3 surfaces, analogous to the analytic moduli space of marked K3 surfaces. We describe a theory of crystals for twisted supersingular K3 surfaces and a twisted period morphism from the moduli space of twisted supersingular K3 surfaces to this space of crystals. As applications of this theory, we give a new proof of the Ogus-Torelli theorem modeled on Verbitskys proof in the complex analytic setting and a new proof of the result of Rudakov-Shafarevich that supersingular K3 surfaces have potentially good reduction. These proofs work in characteristic 3, filling in the last remaining gaps in the theory. As a further application, we show that each component of the supersingular locus in each moduli space of polarized K3 surfaces is unirational.
Fix a symplectic K3 surface X homologically mirror to an algebraic K3 surface Y by an equivalence taking a graded Lagrangian torus L in X to the skyscraper sheaf of a point y of Y. We show there are Lagrangian tori with vanishing Maslov class in X whose class in the Grothendieck group of the Fukaya category is not generated by Lagrangian spheres. This is mirror to a statement about the `Beauville--Voisin subring in the Chow groups of Y, and fits into a conjectural relationship between Lagrangian cobordism and rational equivalence of algebraic cycles.
Using Gauss-Manin derivatives of normal functions, we arrive at some remarkable results on the non-triviality of the transcendental regulator for $K_m$ of a very general projective algebraic manifold. Our strongest results are for the transcendental regulator for $K_1$ of a very general $K3$ surface. We also construct an explicit family of $K_1$ cycles on $H oplus E_8 oplus E_8$-polarized $K3$ surfaces, and show they are indecomposable by a direct evaluation of the real regulator. Critical use is made of natural elliptic fibrations, hypersurface normal forms, and an explicit parametrization by modular functions.
We study a pencil of K3 surfaces that appeared in the $2$-loop diagrams in Bhabha scattering. By analysing in detail the Picard lattice of the general and special members of the pencil, we identify the pencil with the celebrated Apery--Fermi pencil, that was related to Aperys proof of the irrationality of $zeta(3)$ through the work of F. Beukers, C. Peters and J. Stienstra. The same pencil appears miraculously in different and seemingly unrelated physical contexts.
Let Y and X denote C^k vector fields on a possibly noncompact surface with empty boundary, k >0. Say that Y tracks X if the dynamical system it generates locally permutes integral curves of X. Let K be a locally maximal compact set of zeroes of X. THEOREM Assume the Poincare-Hopf index of X at K is nonzero, and the k-jet of X at each point of K is nontrivial. If g is a supersolvable Lie algebra of C^k vector fields that track X, then the elements of g have a common zero in K. Applications are made to attractors and transformation groups.