The contracting boundary of a proper geodesic metric space consists of equivalence classes of geodesic rays that behave like rays in a hyperbolic space. We introduce a geometrically relevant, quasi-isometry invariant topology on the contracting boundary. When the space is the Cayley graph of a finitely generated group we show that our new topology is metrizable.
Stable subgroups and the Morse boundary are two systematic approaches to collect and study the hyperbolic aspects of finitely generated groups. In this paper we unify and generalize these strategies by viewing any geodesic metric space as a countable union of stable subspaces: we show that every stable subgroup is a quasi--convex subset of a set in this collection and that the Morse boundary is recovered as the direct limit of the usual Gromov boundaries of these hyperbolic subspaces. We use this approach, together with results of Leininger--Schleimer, to deduce that there is no purely geometric obstruction to the existence of a non-virtually--free convex cocompact subgroup of a mapping class group. In addition, we define two new quasi--isometry invariant notions of dimension: the stable dimension, which measures the maximal asymptotic dimension of a stable subset; and the Morse capacity dimension, which naturally generalises Buyalos capacity dimension for boundaries of hyperbolic spaces. We prove that every stable subset of a right--angled Artin group is quasi--isometric to a tree; and that the stable dimension of a mapping class group is bounded from above by a multiple of the complexity of the surface. In the case of relatively hyperbolic groups we show that finite stable dimension is inherited from peripheral subgroups. Finally, we show that all classical small cancellation groups and certain Gromov monster groups have stable dimension at most 2.
We give a complete analytic and geometric description of the horofunction boundary for polygonal sub-Finsler metrics---that is, those that arise as asymptotic cones of word metrics---on the Heisenberg group. We develop theory for the more general case of horofunction boundaries in homogeneous groups by connecting horofunctions to Pansu derivatives of the distance function.
Let $X$ be a geodesic metric space with $H_1(X)$ uniformly generated. If $X$ has asymptotic dimension one then $X$ is quasi-isometric to an unbounded tree. As a corollary, we show that the asymptotic dimension of the curve graph of a compact, oriented surface with genus $g ge 2$ and one boundary component is at least two.
We prove that if $B$ is a $p$-block with non-trivial defect group $D$ of a finite $p$-solvable group $G$, then $ell(B) < p^r$, where $r$ is the sectional rank of $D$. We remark that there are infinitely many $p$-blocks $B$ with non-Abelian defect groups and $ell(B) = p^r - 1$. We conjecture that the inequality $ell(B) leq p^r$ holds for an arbitrary $p$-block with defect group of sectional rank $r$. We show this to hold for a large class of $p$-blocks of various families of quasi-simple and nearly simple groups.