Do you want to publish a course? Click here

Integrability theorems and conformally constant Chern scalar curvature metrics in almost Hermitian geometry

228   0   0.0 ( 0 )
 Added by Mehdi Lejmi
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

The various scalar curvatures on an almost Hermitian manifold are studied, in particular with respect to conformal variations. We show several integrability theorems, which state that two of these can only agree in the Kahler case. Our main question is the existence of almost Kahler metrics with conformally constant Chern scalar curvature. This problem is completely solved for ruled manifolds and in a complementary case where methods from the Chern-Yamabe problem are adapted to the non-integrable case. Also a moment map interpretation of the problem is given, leading to a Futaki invariant and the usual picture from geometric invariant theory.



rate research

Read More

89 - Giovanni Catino 2021
Extending Aubins construction of metrics with constant negative scalar curvature, we prove that every $n$-dimensional closed manifold admits a Riemannian metric with constant negative scalar-Weyl curvature, that is $R+t|W|, tinmathbb{R}$. In particular, there are no topological obstructions for metrics with $varepsilon$-pinched Weyl curvature and negative scalar curvature.
We consider conformal deformations within a class of incomplete Riemannian metrics which generalize conic orbifold singularities by allowing both warping and any compact manifold (not just quotients of the sphere) to be the link of the singular set. Within this class of conic metrics, we determine obstructions to the existence of conformal deformations to constant scalar curvature of any sign (positive, negative, or zero). For conic metrics with negative scalar curvature, we determine sufficient conditions for the existence of a conformal deformation to a conic metric with constant scalar curvature -1; moreover, we show that this metric is unique within its conformal class of conic metrics. Our work is in dimensions three and higher.
368 - Xuezhang Chen , Liming Sun 2016
We study the problem of deforming a Riemannian metric to a conformal one with nonzero constant scalar curvature and nonzero constant boundary mean curvature on a compact manifold of dimension $ngeq 3$. We prove the existence of such conformal metrics in the cases of $n=6,7$ or the manifold is spin and some other remaining ones left by Escobar. Furthermore, in the positive Yamabe constant case, by normalizing the scalar curvature to be $1$, there exists a sequence of conformal metrics such that their constant boundary mean curvatures go to $+infty$.
In [7], a notion of constant scalar curvature metrics on piecewise flat manifolds is defined. Such metrics are candidates for canonical metrics on discrete manifolds. In this paper, we define a class of vertex transitive metrics on certain triangulations of $mathbb{S}^3$; namely, the boundary complexes of cyclic polytopes. We use combinatorial properties of cyclic polytopes to show that, for any number of vertices, these metrics have constant scalar curvature.
186 - Yuxin Dong , Wei Zhang 2016
In this paper, we study the theory of geodesics with respect to the Tanaka-Webster connection in a pseudo-Hermitian manifold, aiming to generalize some comparison results in Riemannian geometry to the case of pseudo-Hermitian geometry. Some Hopf-Rinow type, Cartan-Hadamard type and Bonnet-Myers type results are established.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا