Do you want to publish a course? Click here

Conformal deformations of conic metrics to constant scalar curvature

96   0   0.0 ( 0 )
 Added by Julie Rowlett
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We consider conformal deformations within a class of incomplete Riemannian metrics which generalize conic orbifold singularities by allowing both warping and any compact manifold (not just quotients of the sphere) to be the link of the singular set. Within this class of conic metrics, we determine obstructions to the existence of conformal deformations to constant scalar curvature of any sign (positive, negative, or zero). For conic metrics with negative scalar curvature, we determine sufficient conditions for the existence of a conformal deformation to a conic metric with constant scalar curvature -1; moreover, we show that this metric is unique within its conformal class of conic metrics. Our work is in dimensions three and higher.



rate research

Read More

368 - Xuezhang Chen , Liming Sun 2016
We study the problem of deforming a Riemannian metric to a conformal one with nonzero constant scalar curvature and nonzero constant boundary mean curvature on a compact manifold of dimension $ngeq 3$. We prove the existence of such conformal metrics in the cases of $n=6,7$ or the manifold is spin and some other remaining ones left by Escobar. Furthermore, in the positive Yamabe constant case, by normalizing the scalar curvature to be $1$, there exists a sequence of conformal metrics such that their constant boundary mean curvatures go to $+infty$.
89 - Giovanni Catino 2021
Extending Aubins construction of metrics with constant negative scalar curvature, we prove that every $n$-dimensional closed manifold admits a Riemannian metric with constant negative scalar-Weyl curvature, that is $R+t|W|, tinmathbb{R}$. In particular, there are no topological obstructions for metrics with $varepsilon$-pinched Weyl curvature and negative scalar curvature.
195 - Weiyong He , Jun Li 2018
The scalar curvature equation for rotation invariant Kahler metrics on $mathbb{C}^n backslash {0}$ is reduced to a system of ODEs of order 2. By solving the ODEs, we obtain complete lists of rotation invariant zero or positive csck on $mathbb{C}^n backslash {0}$ in lower dimensions. We also prove that there does not exist negative csck on $mathbb{C}^n backslash {0}$ for $n=2,3$.
101 - Xuezhang Chen , Nan Wu 2019
We first present a warped product manifold with boundary to show the non-uniqueness of the positive constant scalar curvature and positive constant boundary mean curvature equation. Next, we construct a smooth counterexample to show that the compactness of the set of lower energy solutions to the above equation fails when the dimension of the manifold is not less than $62$.
In [7], a notion of constant scalar curvature metrics on piecewise flat manifolds is defined. Such metrics are candidates for canonical metrics on discrete manifolds. In this paper, we define a class of vertex transitive metrics on certain triangulations of $mathbb{S}^3$; namely, the boundary complexes of cyclic polytopes. We use combinatorial properties of cyclic polytopes to show that, for any number of vertices, these metrics have constant scalar curvature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا