Do you want to publish a course? Click here

Nanoscale Magnetic Compasses

104   0   0.0 ( 0 )
 Added by Hidetsugu Shiozawa
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have synthesized nanoscale magnetic compasses with high yield. These ferromagnetic iron carbide nano-particles, which are encapsulated in a pair of parallel carbon needles, change their direction in response to an external magnetic field. Electron holography reveals magnetic fields confined to the vicinity of the bicone-shaped particles, which are composed of few ferromagnetic domains. Aligned magnetically and encapsulated in an acrylate polymer matrix, these nanocompasses exhibit anisotropic bulk magnetic permeability with an easy axis normal to the needle direction, that can be understood as a result of the anisotropic demagnetizing field of a nonspherical single-domain particle. This novel material with orthogonal magnetic and structural axes could be highly useful as magnetic components in electromagnetic wave absorbent materials and magnetorheological fluids.

rate research

Read More

We investigate submicron ferromagnetic PdNi thin-film strips intended as contact electrodes for carbon nanotube-based spintronic devices. The magnetic anisotropy and micromagnetic structure are measured as function of temperature and aspect ratio. Contrary to the expectation from shape anisotropy, magnetic hysteresis measurements of Pd0.3Ni0.7 on arrays containing strips of various width point towards a magnetically easy axis in the sample plane, but transversal to the strip direction. Anisotropic magnetoresistance measured on individual Pd0.3Ni0.7 contact strips and magnetic force microscopy images substantiate that conclusion.
Topological spin textures can serve as non-volatile information carriers. Here we study the current-induced dynamics of magnetic skyrmions on a nanoscale square grid formed by orthogonal defect lines with reduced magnetic anisotropy. A skyrmion on the square grid is pixelated with a quantized size of the grid. We demonstrate that the position, size, and shape of skyrmions on the square grid are electrically configurable, which can be used to store digital information. The skyrmion center is quantized to be on the grid and the skyrmion shows a hopping motion instead of a continuous motion. We find that the skyrmion Hall effect can be perfectly prohibited due to the pinning effect of the grid. The pixelated skyrmions can be harnessed to build the programmable racetrack memory, multistate memory, and logic computing device. Our results will be a basis for future digital computation based on pixelated topological spin textures.
118 - B. A. Moores , A. Eichler , Y. Tao 2014
We report a method for accelerated nanoscale nuclear magnetic resonance imaging by detecting several signals in parallel. Our technique relies on phase multiplexing, where the signals from different nuclear spin ensembles are encoded in the phase of an ultrasensitive magnetic detector. We demonstrate this technique by simultaneously acquiring statistically polarized spin signals from two different nuclear species (1H, 19F) and from up to six spatial locations in a nanowire test sample using a magnetic resonance force microscope. We obtain one-dimensional imaging resolution better than 5 nm, and subnanometer positional accuracy.
The magnetic field associated with a picosecond intense electron pulse is shown to switch locally the magnetization of extended films and nanostructures and to ignite locally spin waves excitations. Also, topologically protected magnetic textures such as skyrmions can be imprinted swiftly in a sample with a residual Dzyaloshinskii-Moriya spin-orbital coupling. Characteristics of the created excitations such as the topological charge or the width of the magnon spectrum can be steered via the duration and the strength of the electron pulses. The study points to a possible way for a spatiotemporally controlled generation of magnetic and skyrmionic excitations.
We present a new method for high-resolution nanoscale magnetic resonance imaging (nano-MRI) that combines the high spin sensitivity of nanowire-based magnetic resonance detection with high spectral resolution nuclear magnetic resonance (NMR) spectroscopy. By applying NMR pulses designed using optimal control theory, we demonstrate a factor of $500$ reduction of the proton spin resonance linewidth in a $(50text{-nm})^{text{3}}$ volume of polystyrene and image proton spins in one dimension with a spatial resolution below $2~text{nm}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا