No Arabic abstract
We present results from new experiments to study the dynamics of radiative shocks, reverse shocks and radiative precursors. Laser ablation of a solid piston by the Orion high-power laser at AWE Aldermaston UK was used to drive radiative shocks into a gas cell initially pressurised between $0.1$ and $1.0 bar$ with different noble gases. Shocks propagated at {$80 pm 10 km/s$} and experienced strong radiative cooling resulting in post-shock compressions of { $times 25 pm 2$}. A combination of X-ray backlighting, optical self-emission streak imaging and interferometry (multi-frame and streak imaging) were used to simultaneously study both the shock front and the radiative precursor. These experiments present a new configuration to produce counter-propagating radiative shocks, allowing for the study of reverse shocks and providing a unique platform for numerical validation. In addition, the radiative shocks were able to expand freely into a large gas volume without being confined by the walls of the gas cell. This allows for 3-D effects of the shocks to be studied which, in principle, could lead to a more direct comparison to astrophysical phenomena. By maintaining a constant mass density between different gas fills the shocks evolved with similar hydrodynamics but the radiative precursor was found to extend significantly further in higher atomic number gases ($sim$$4$ times further in xenon than neon). Finally, 1-D and 2-D radiative-hydrodynamic simulations are presented showing good agreement with the experimental data.
We present new experiments to study the formation of radiative shocks and the interaction between two counter-propagating radiative shocks. The experiments were performed at the Orion laser facility which was used to drive shocks in xenon inside large aspect ratio gas-cells. The collision between the two shocks and their respective radiative precursors, combined with the formation of inherently 3-dimensional shocks, provides a novel platform particularly suited for benchmarking of numerical codes. The dynamics of the shocks before and after the collision were investigated using point-projection X-ray backlighting while, simultaneously, the electron density in the radiative precursor was measured via optical laser interferometry. Modelling of the experiments using the 2-D radiation hydrodynamic codes NYM/PETRA show a very good agreement with the experimental results.
We report on the design and first results from experiments looking at the formation of radiative shocks on the Shenguang-II (SG-II) laser at the Shanghai Institute of Optics and Fine Mechanics in China. Laser-heating of a two-layer CH/CH-Br foil drives a $sim$40 km/s shock inside a gas-cell filled with argon at an initial pressure of 1 bar. The use of gas-cell targets with large (several mm) lateral and axial extent allows the shock to propagate freely without any wall interactions, and permits a large field of view to image single and colliding counter-propagating shocks with time resolved, point-projection X-ray backlighting ($sim20$ $mu$m source size, 4.3 keV photon energy). Single shocks were imaged up to 100 ns after the onset of the laser drive allowing to probe the growth of spatial non-uniformities in the shock apex. These results are compared with experiments looking at counter-propagating shocks, showing a symmetric drive which leads to a collision and stagnation from $sim$40 ns onward. We present a preliminary comparison with numerical simulations with the radiation hydrodynamics code ARWEN, which provides expected plasma parameters for the design of future experiments in this facility.
Preliminary experiments have been performed to investigate the effects of radiative cooling on plasma jets. Thin (3 um - 5 um) conical shells were irradiated with an intense laser, driving jets with velocities > 100 km/s. Through use of different target materials - aluminium, copper and gold - the degree of radiative losses was altered, and their importance for jet collimation investigated. A number of temporally resoved optical diagnostics was used, providing information about the jet evolution. Gold jets were seen to be narrower than those from copper targets, while aluminium targets produced the least collimated flows.
Stochasticity effects in the spin (de)polarization of an ultrarelativistic electron beam during photon emissions in a counterpropoagating ultrastrong focused laser pulse in the quantum radiation reaction regime are investigated. We employ a Monte Carlo method to describe the electron dynamics semiclassically, and photon emissions as well as the electron radiative polarization quantum mechanically. While in the latter the photon emission is inherently stochastic, we were able to identify its imprints in comparison with the new developed semiclassical stochasticity-free method of radiative polarization applicable in the quantum regime. With an initially spin-polarized electron beam, the stochastic spin effects are seen in the dependence of the depolarization degree on the electron scattering angle and the electron final energy (spin stochastic diffusion). With an initially unpolarized electron beam, the spin stochasticity is exhibited in enhancing the known effect of splitting of the electron beam along the propagation direction into two oppositely polarized parts by an elliptically polarized laser pulse. The considered stochasticity effects for the spin are observable with currently achievable laser and electron beam parameters.
Megabar (1 Mbar = 100 GPa) laser shocks on precompressed samples allow reaching unprecedented high densities and moderately high 10000-100000K temperatures. We describe here a complete analysis framework for the velocimetry (VISAR) and pyrometry (SOP) data produced in these experiments. Since the precompression increases the initial density of both the sample of interest and the quartz reference for pressure-density, reflectivity and temperature measurements, we describe analytical corrections based on available experimental data on warm dense silica and density-functional-theory based molecular dynamics computer simulations. Using our improved analysis framework we report a re-analysis of previously published data on warm dense hydrogen and helium, compare the newly inferred pressure, density and temperature data with most advanced equation of state models and provide updated reflectivity values.