Do you want to publish a course? Click here

SKA Aperture Array Verification System: Electromagnetic modeling and beam pattern measurements using a micro UAV

128   0   0.0 ( 0 )
 Added by Eloy de Lera Acedo
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we present the electromagnetic modeling and beam pattern measurements of a 16-elements ultra wideband sparse random test array for the low frequency instrument of the Square Kilometer Array telescope. We discuss the importance of a small array test platform for the development of technologies and techniques towards the final telescope, highlighting the most relevant aspects of its design. We also describe the electromagnetic simulations and modeling work as well as the embedded-element and array pattern measurements using an Unmanned Aerial Vehicle system. The latter are helpful both for the validation of the models and the design as well as for the future instrumental calibration of the telescope thanks to the stable, accurate and strong radio frequency signal transmitted by the UAV. At this stage of the design, these measurements have shown a general agreement between experimental results and numerical data and have revealed the localized effect of un-calibrated cable lengths in the inner side-lobes of the array pattern.



rate research

Read More

This document describes the top level requirements for the SKA-AAMID telescope as determined by the SKA key science projects. These include parameters such as operating frequency range,instantaneous bandwidth (total processed bandwidth), field of view (or survey speed, as appropriate), sensitivity, dynamic range, polarization purity etc. Moreover, through the definition of a set of science requirements, this document serves as input to a number of other documents contained within the System Requirements Review package. (particularly SKA-TEL-MFAA-0200005: `SKA-AAMID System Requirements and SKA-TEL-MFAA-0200008: `MFAA Requirements).
The Hydrogen Epoch of Reionization Array (HERA) is a radio interferometer aiming to detect the power spectrum of 21 cm fluctuations from neutral hydrogen from the Epoch of Reionization (EOR). Drawing on lessons from the Murchison Widefield Array (MWA) and the Precision Array for Probing the Epoch of Reionization (PAPER), HERA is a hexagonal array of large (14 m diameter) dishes with suspended dipole feeds. Not only does the dish determine overall sensitivity, it affects the observed frequency structure of foregrounds in the interferometer. This is the first of a series of four papers characterizing the frequency and angular response of the dish with simulations and measurements. We focus in this paper on the angular response (i.e., power pattern), which sets the relative weighting between sky regions of high and low delay, and thus, apparent source frequency structure. We measure the angular response at 137 MHz using the ORBCOMM beam mapping system of Neben et al. We measure a collecting area of 93 m^2 in the optimal dish/feed configuration, implying HERA-320 should detect the EOR power spectrum at z~9 with a signal-to-noise ratio of 12.7 using a foreground avoidance approach with a single season of observations, and 74.3 using a foreground subtraction approach. Lastly we study the impact of these beam measurements on the distribution of foregrounds in Fourier space.
Aperture arrays have been studied extensively for application in the next generation of large radio telescopes for astronomy, requiring extremely low noise performance. Prototype array systems need to demonstrate the low noise potential of aperture array technology. This paper presents noise measurements for an Aperture Array tile of 144 dual-polarized tapered slot antenna (TSA) elements, originally built and characterized for use as a Phased Array Feed for application in an L-band radio astronomical receiving system. The system noise budget is given and the dependency of the measured noise temperatures on the beam steering is discussed. A comparison is made of the measurement results with simulations of the noise behavior using a system noise model. This model includes the effect of receiver noise coupling, resulting from a changing active reflection coefficient and array noise contribution as a function of beam steering. Measurement results clearly demonstrate the validity of the model and thus the concept of active reflection coefficient for the calculation of effective system noise temperatures. The presented array noise temperatures, with a best measured value of 45 K, are state-of-the-art for room temperature aperture arrays in the 1 GHz range and illustrate their low noise potential.
The purpose of this report is to document the noise performance of a complex beamforming array antenna system and to characterize the recently developed noise measurement facility called THACO, which was developed at ASTRON. The receiver system includes the array antenna of strongly coupled 144 TSA elements, 144 Low Noise Amplifiers (LNAs) (Tmin =35-40K) and the data recording/storing facilities of the initial test station that allow for off-line digital beamforming. The primary goal of this study is to compare the measured receiver noise temperatures with the simulated values for several practical beamformers, and to predict the associated receiver noise coupling contribution, antenna thermal noise and ground noise pick-up (due to the back radiation).
The very demanding requirements of the SKA-low instrument call for a challenging antenna design capable of delivering excellence performance in radiation patterns, impedance matching, polarization purity, cost, longevity, etc. This paper is devoted to the development (design and test of first prototypes) of an active ultra-wideband antenna element for the low-frequency instrument of the SKA radio telescope. The antenna element and differential low noise amplifier described here were originally designed to cover the former SKA-low band (70-450MHz) but it is now aimed to cover the re-defined SKA-low band (50-350MHz) and furthermore the antenna is capable of performing up to 650MHz with the current design. The design is focused on maximum sensitivity in a wide field of view (+/- 45deg from zenith) and low cross-polarization ratios. Furthermore, the size and cost of the element has to be kept to a minimum as millions of these antennas will need to be deployed for the full SKA in very compact configurations. The primary focus of this paper is therefore to discuss various design implications for the SKA-low telescope.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا