No Arabic abstract
Numerical simulations are a powerful tool to study quantum systems beyond exactly solvable systems lacking an analytic expression. For one-dimensional entangled quantum systems, tensor network methods, amongst them Matrix Product States (MPSs), have attracted interest from different fields of quantum physics ranging from solid state systems to quantum simulators and quantum computing. Our open source MPS code provides the community with a toolset to analyze the statics and dynamics of one-dimensional quantum systems. Here, we present our open source library, Open Source Matrix Product States (OSMPS), of MPS methods implemented in Python and Fortran2003. The library includes tools for ground state calculation and excited states via the variational ansatz. We also support ground states for infinite systems with translational invariance. Dynamics are simulated with different algorithms, including three algorithms with support for long-range interactions. Convenient features include built-in support for fermionic systems and number conservation with rotational $mathcal{U}(1)$ and discrete $mathbb{Z}_2$ symmetries for finite systems, as well as data parallelism with MPI. We explain the principles and techniques used in this library along with examples of how to efficiently use the general interfaces to analyze the Ising and Bose-Hubbard models. This description includes the preparation of simulations as well as dispatching and post-processing of them.
Recent developments in matrix-product-state (MPS) investigations of many-body localization (MBL) are reviewed, with a discussion of benefits and limitations of the method. This approach allows one to explore the physics around the MBL transition in systems much larger than those accessible to exact diagonalization. System sizes and length scales that can be controllably accessed by the MPS approach are comparable to those studied in state-of-the-art experiments. Results for 1D, quasi-1D, and 2D random systems, as well as 1D quasi-periodic systems are presented. On time scales explored (up to $t approx 300$ in units set by the hopping amplitude), a slow, subdiffusive transport in a rather broad disorder range on the ergodic side of the MBL transition is found. For 1D random spin chains, which serve as a standard model of the MBL transition, the MPS study demonstrates a substantial drift of the critical point $W_c(L)$ with the system size $L$: while for $L approx 20$ we find $W_c approx 4$, as also given by exact diagonalization, the MPS results for $L = 50$--100 provide evidence that the critical disorder saturates, in the large-$L$ limit, at $W_c approx 5.5$. For quasi-periodic systems, these finite-size effects are much weaker, which suggests that they can be largely attributed to rare events. For quasi-1D ($dtimes L$, with $d ll L$) and 2D ($Ltimes L$) random systems, the MPS data demonstrate an unbounded growth of $W_c$ in the limit of large $d$ and $L$, in agreement with analytical predictions based on the rare-event avalanche theory.
We introduce a new type of models for two-component systems in one dimension subject to exact solutions by Bethe ansatz, where the interspecies interactions are tunable via Feshbach resonant interactions. The applicability of Bethe ansatz is obtained by fine-tuning the resonant energies, and the resulting systems can be described by introducing intraspecies repulsive and interspecies attractive couplings $c_1$ and $c_2$. This kind of systems admits two types of interesting solutions: In the regime with $c_1>c_2$, the ground state is a Fermi sea of two-strings, where the Fermi momentum $Q$ is constrained to be smaller than a certain value $Q^*$, and it provides an ideal scenario to realize BCS-BEC crossover (from weakly attractive atoms to weakly repulsive molecules) in one dimension; In the opposite regime with $c_1<c_2$, the ground state is a single bright soliton even for fermionic atoms, which reveals itself as an embedded string solution.
We compare accuracy of two prime time evolution algorithms involving Matrix Product States - tDMRG (time-dependent density matrix renormalization group) and TDVP (time-dependent variational principle). The latter is supposed to be superior within a limited and fixed auxiliary space dimension. Surprisingly, we find that the performance of algorithms depends on the model considered. In particular, many-body localized systems as well as the crossover regions between localized and delocalized phases are better described by tDMRG, contrary to the delocalized regime where TDVP indeed outperforms tDMRG in terms of accuracy and reliability. As an example, we study many-body localization transition in a large size Heisenberg chain. We discuss drawbacks of previous estimates [Phys. Rev. B 98, 174202 (2018)] of the critical disorder strength for large systems.
We study the delocalization dynamics of interacting disordered hard-core bosons for quasi-1D and 2D geometries, with system sizes and time scales comparable to state-of-the-art experiments. The results are strikingly similar to the 1D case, with slow, subdiffusive dynamics featuring power-law decay. From the freezing of this decay we infer the critical disorder $W_c(L, d)$ as a function of length $L$ and width $d$. In the quasi-1D case $W_c$ has a finite large-$L$ limit at fixed $d$, which increases strongly with $d$. In the 2D case $W_c(L,L)$ grows with $L$. The results are consistent with the avalanche picture of the many-body localization transition.
In this letter, we study the PXP Hamiltonian with an external magnetic field that exhibits both quantum scar states and quantum criticality. It is known that this model hosts a series of quantum many-body scar states violating quantum thermalization at zero magnetic field, and it also exhibits an Ising quantum phase transition driven by finite magnetic field. Although the former involves the properties of generic excited states and the latter concerns the low-energy physics, we discover two surprising connections between them, inspired by the observation that both states possess log-volume law entanglement entropies. First, we show that the quantum many-body scar states can be tracked to a set of quantum critical states, whose nature can be understood as pair-wisely occupied Fermi sea states. Second, we show that the partial violation of quantum thermalization diminishes in the quantum critical regime. We envision that these connections can be extended to general situations and readily verified in existing cold atom experimental platforms.