Do you want to publish a course? Click here

The Henon-Heiles system defined on Lie-algebraically deformed Galilei space-time

71   0   0.0 ( 0 )
 Added by Marcin Daszkiewicz
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

In this article we provide the Henon-Heiles system defined on Lie-algebraically deformed nonrelativistic space-time with the commutator of two spatial directions proportional to time. Particularly, we demonstrate that in such a model the total energy is not conserved and for this reason the role of control parameter is taken by the initial energy value $E_{0,{rm tot}} = E_{{rm tot}}(t=0)$. Besides, we show that in contrast with the commutative case, for chosen values of deformation parameter $kappa$, there appears chaos in the system for initial total energies $E_{0,{rm tot}}$ below the threshold $E_{0,{rm th}} = 1/6$.



rate research

Read More

55 - Marcin Daszkiewicz 2016
In this article we provide canonically deformed classical Henon-Heiles system. Further we demonstrate that for proper value of deformation parameter $theta$ there appears chaos in the model.
72 - Marcin Daszkiewicz 2018
Recently, there has been provided two chaotic models based on the twist-deformation of classical Henon-Heiles system. First of them has been constructed on the well-known, canonical space-time noncommutativity, while the second one on the Lie-algebraically type of quantum space, with two spatial directions commuting to classical time. In this article, we find the direct link between mentioned above systems, by synchronization both of them in the framework of active control method. Particularly, we derive at the canonical phase-space level the corresponding active controllers as well as we perform (as an example) the numerical synchronization of analyzed models.
67 - Marcin Daszkiewicz 2019
In this article we discus the energy-momentum conservation principle for two-particle system in the case of canonically and Lie-algebraically twist-deformed Galilei Hopf algebra. Particularly, we provide consistent with the coproducts energy and momentum addition law as well as its symmetric with respect the exchange of particles counterpart. Besides, we show that the vanishing of total fourmomentum for two Lie-algebraically deformed kinematical models leads to the discret values of energies and momenta only in the case of the symmetrized addition rules.
129 - J. Kaidel , P. Winkler , M. Brack 2003
We investigate the resonance spectrum of the Henon-Heiles potential up to twice the barrier energy. The quantum spectrum is obtained by the method of complex coordinate rotation. We use periodic orbit theory to approximate the oscillating part of the resonance spectrum semiclassically and Strutinsky smoothing to obtain its smooth part. Although the system in this energy range is almost chaotic, it still contains stable periodic orbits. Using Gutzwillers trace formula, complemented by a uniform approximation for a codimension-two bifurcation scenario, we are able to reproduce the coarse-grained quantum-mechanical density of states very accurately, including only a few stable and unstable orbits.
59 - M. Brack , J. Kaidel , P. Winkler 2005
We discuss the coarse-grained level density of the Henon-Heiles system above the barrier energy, where the system is nearly chaotic. We use periodic orbit theory to approximate its oscillating part semiclassically via Gutzwillers semiclassical trace formula (extended by uniform approximations for the contributions of bifurcating orbits). Including only a few stable and unstable orbits, we reproduce the quantum-mechanical density of states very accurately. We also present a perturbative calculation of the stabilities of two infinite series of orbits (R$_n$ and L$_m$), emanating from the shortest librating straight-line orbit (A) in a bifurcation cascade just below the barrier, which at the barrier have two common asymptotic Lyapunov exponents $chi_{rm R}$ and $chi_{rm L}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا