Do you want to publish a course? Click here

Enhanced spin-orbit torques in MnAl/Ta films with improving chemical ordering

226   0   0.0 ( 0 )
 Added by Kangkang Meng
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the enhancement of spin-orbit torques in MnAl/Ta films with improving chemical ordering through annealing. The switching current density is increased due to enhanced saturation magnetization MS and effective anisotropy field HK after annealing. Both damplinglike effective field HD and fieldlike effective field HF have been increased in the temperature range of 50 to 300 K. HD varies inversely with MS in both of the films, while the HF becomes liner dependent on 1/MS in the annealed film. We infer that the improved chemical ordering has enhanced the interfacial spin transparency and the transmitting of the spin current in MnAl layer.



rate research

Read More

Current induced spin-orbit torques have been studied in ferromagnetic nanowires made of 20 nm thick Co/Pd multilayers with perpendicular magnetic anisotropy. Using Hall voltage and lock-in measurements, it is found that upon injection of an electric current both in-plane (Slonczewski-like) and perpendicular (field-like) torques build up in the nanowire. The torque efficiencies are found to be as large as 1.17 kOe and 5 kOe at 108 A/cm2 for the in-plane and perpendicular components, respectively, which is surprisingly comparable to previous studies in ultrathin (~ 1 nm) magnetic bilayers. We show that this result cannot be explained solely by spin Hall effect induced torque at the outer interfaces, indicating a probable contribution of the bulk of the Co/Pd multilayer.
Heavy metal-ferromagnet bilayer structures have attracted great research interest for charge-to-spin interconversion. In this work, we have investigated the effect of the permalloy seed layer on the Ta polycrystalline phase and its spin Hall angle. Interestingly, for the same deposition rates the crystalline phase of Ta deposited on Py seed layer strongly depends on the thickness of the seed layer. We have observed a phase transition from $alpha$-Ta to ($alpha$+$beta$)-Ta while increasing the Py seed layer thickness. The observed phase transition is attributed to the strain at interface between Py and Ta layers. Ferromagnetic resonance-based spin pumping studies reveal that the spin-mixing conductance in the to ($alpha$+$beta$)-Ta is relatively higher as compared to the to $alpha$-Ta. Spin Hall angles of to $alpha$-Ta and to ($alpha$+$beta$)-Ta are extracted from inverse spin Hall effect (ISHE) measurements. Spin Hall angle of the to ($alpha$+$beta$)-Ta is estimated to be $theta$_SH=-0.15 which is relatively higher than that of to $alpha$-Ta. Our systematic results connecting the phase of the Ta with seed layer and its effect on the efficiency of spin to charge conversion might resolve ambiguities across various literature and open up new functionalities based on the growth process for the emerging spintronic devices.
Deterministic magnetization switching using spin-orbit torque (SOT) has recently emerged as an efficient means to electrically control the magnetic state of ultrathin magnets. The SOT switching still lacks in oscillatory switching characteristics over time, therefore, it is limited to bipolar operation where a change in polarity of the applied current or field is required for bistable switching. The coherent rotation based oscillatory switching schemes cannot be applied to SOT because the SOT switching occurs through expansion of magnetic domains. Here, we experimentally achieve oscillatory switching in incoherent SOT process by controlling domain wall dynamics. We find that a large field-like component can dynamically influence the domain wall chirality which determines the direction of SOT switching. Consequently, under nanosecond current pulses, the magnetization switches alternatively between the two stable states. By utilizing this oscillatory switching behavior we demonstrate a unipolar deterministic SOT switching scheme by controlling the current pulse duration.
Current induced domain wall (DW) motion in perpendicularly magnetized nanostripes in the presence of spin orbit torques is studied. We show using micromagnetic simulations that the direction of the current induced DW motion and the associated DW velocity depend on the relative values of the field like torque (FLT) and the Slonczewski like torques (SLT). The results are well explained by a collective coordinate model which is used to draw a phase diagram of the DW dynamics as a function of the FLT and the SLT. We show that a large increase in the DW velocity can be reached by a proper tuning of both torques.
Transition metal dichalcogenides (TMDs) are promising materials for efficient generation of current-induced spin-orbit torques on an adjacent ferromagnetic layer. Numerous effects, both interfacial and bulk, have been put forward to explain the different torques previously observed. Thus far, however, there is no clear consensus on the microscopic origin underlying the spin-orbit torques observed in these TMD/ferromagnet bilayers. To shine light on the microscopic mechanisms at play, here we perform thickness dependent spin-orbit torque measurements on the semiconducting WSe$_{2}$/permalloy bilayer with various WSe$_{2}$ layer thickness, down to the monolayer limit. We observe a large out-of-plane field-like torque with spin-torque conductivities up to $1times10^4 ({hbar}/2e) ({Omega}m)^{-1}$. For some devices, we also observe a smaller in-plane antidamping-like torque, with spin-torque conductivities up to $4times10^{3} ({hbar}/2e) ({Omega}m)^{-1}$, comparable to other TMD-based systems. Both torques show no clear dependence on the WSe$_{2}$ thickness, as expected for a Rashba system. Unexpectedly, we observe a strong in-plane magnetic anisotropy - up to about $6.6times10^{4} erg/cm^{3}$ - induced in permalloy by the underlying hexagonal WSe$_{2}$ crystal. Using scanning transmission electron microscopy, we confirm that the easy axis of the magnetic anisotropy is aligned to the armchair direction of the WSe$_{2}$. Our results indicate a strong interplay between the ferromagnet and TMD, and unveil the nature of the spin-orbit torques in TMD-based devices. These findings open new avenues for possible methods for optimizing the torques and the interaction with interfaced magnets, important for future non-volatile magnetic devices for data processing and storage.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا