Do you want to publish a course? Click here

Proton Dynamics in Protein Mass Spectrometry

108   0   0.0 ( 0 )
 Added by Wenping Lv
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Native electrospray ionization/ion mobility-mass spectrometry (ESI/IM-MS) allows an accurate determination of low-resolution structural features of proteins. Yet, the presence of proton dynamics, observed already by us for DNA in the gas phase, and its impact on protein structural determinants, have not been investigated so far. Here, we address this issue by a multi-step simulation strategy on a pharmacologically relevant peptide, the N-terminal residues of amyloid-beta peptide (Abeta(1-16)). Our calculations reproduce the experimental maximum charge state from ESI-MS and are also in fair agreement with collision cross section (CCS) data measured here by ESI/IM-MS. Although the main structural features are preserved, subtle conformational changes do take place in the first ~0.1 ms of dynamics. In addition, intramolecular proton dynamics processes occur on the ps-timescale in the gas phase as emerging from quantum mechanics/molecular mechanics (QM/MM) simulations at the B3LYP level of theory. We conclude that proton transfer phenomena do occur frequently during fly time in ESI-MS experiments (typically on the ms timescale). However, the structural changes associated with the process do not significantly affect the structural determinants.



rate research

Read More

We present the ProCS method for the rapid and accurate prediction of protein backbone amide proton chemical shifts - sensitive probes of the geometry of key hydrogen bonds that determine protein structure. ProCS is parameterized against quantum mechanical (QM) calculations and reproduces high level QM results obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94). ProCS is interfaced with the PHAISTOS protein simulation program and is used to infer statistical protein ensembles that reflect experimentally measured amide proton chemical shift values. Such chemical shift-based structural refinements, starting from high-resolution X-ray structures of Protein G, ubiquitin, and SMN Tudor Domain, result in average chemical shifts, hydrogen bond geometries, and trans-hydrogen bond (h3JNC) spin-spin coupling constants that are in excellent agreement with experiment. We show that the structural sensitivity of the QM-based amide proton chemical shift predictions is needed to refine protein structures to this agreement. The ProCS method thus offers a powerful new tool for refining the structures of hydrogen bonding networks to high accuracy with many potential applications such as protein flexibility in ligand binding.
The diatomic molecule radium monofluoride (RaF) has recently been proposed as a versatile probe for physics beyond the current standard model. Herein, a route towards production of a RaF molecular beam via radium ions is proposed. It takes advantage of the special electronic structure expected for group 2 halides and group 2 hydrides: The electronic ground state of neutral RaF and its monocation differ in occupation of a non-bonding orbital of $sigma$ symmetry. This implies similar equilibrium distances and harmonic vibrational wavenumbers in the two charge states and thus favourable Franck--Condon factors for neutralisation without dissociation in neutralising collisions. According to the calculated ionisation energy of RaF, charge exchange collisions of RaF$^+$ with sodium atoms are almost iso-enthalpic, resulting in large cross-sections for the production of neutral radium monofluoride.
The interactions of a protein, its phase behavior, and ultimately, its ability to function, are all influenced by the interactions between the protein and its hydration waters. Here we study proteins with a variety of sizes, shapes, chemistries, and biological functions, and characterize their interactions with their hydration waters using molecular simulation and enhanced sampling techniques. We find that akin to extended hydrophobic surfaces, proteins situate their hydration waters at the edge of a dewetting transition, making them susceptible to unfavorable perturbations. We also find that the strength of the unfavorable potential needed to trigger dewetting is roughly the same, regardless of the protein being studied, and depends only the width of the hydration shell being perturbed. Our findings establish a framework for systematically classifying protein patches according to how favorably they interact with water.
The common techniques to study protein-protein proximity in vivo are not well-adapted to the capabilities and the expertise of a standard proteomics laboratory, typically based on the use of mass spectrometry. With the aim of closing this gap, we have developed PUB-MS (for Proximity Utilizing Biotinylation and Mass Spectrometry), an approach to monitor protein-protein proximity, based on biotinylation of a protein fused to a biotin-acceptor peptide (BAP) by a biotin-ligase, BirA, fused to its interaction partner. The biotinylation status of the BAP can be further detected by either Western analysis or mass spectrometry. The BAP sequence was redesigned for easy monitoring of the biotinylation status by LC-MS/MS. In several experimental models, we demonstrate that the biotinylation in vivo is specifically enhanced when the BAP- and BirA- fused proteins are in proximity to each other. The advantage of mass spectrometry is demonstrated by using BAPs with different sequences in a single experiment (allowing multiplex analysis) and by the use of stable isotopes. Finally, we show that our methodology can be also used to study a specific subfraction of a protein of interest that was in proximity with another protein at a predefined time before the analysis.
298 - Gelio Alves , Yi-Kuo Yu 2014
Motivation: Assigning statistical significance accurately has become increasingly important as meta data of many types, often assembled in hierarchies, are constructed and combined for further biological analyses. Statistical inaccuracy of meta data at any level may propagate to downstream analyses, undermining the validity of scientific conclusions thus drawn. From the perspective of mass spectrometry based proteomics, even though accurate statistics for peptide identification can now be achieved, accurate protein level statistics remain challenging. Results: We have constructed a protein ID method that combines peptide evidences of a candidate protein based on a rigorous formula derived earlier; in this formula the database $P$-value of every peptide is weighted, prior to the final combination, according to the number of proteins it maps to. We have also shown that this protein ID method provides accurate protein level $E$-value, eliminating the need of using empirical post-processing methods for type-I error control. Using a known protein mixture, we find that this protein ID method, when combined with the Soric formula, yields accurate values for the proportion of false discoveries. In terms of retrieval efficacy, the results from our method are comparable with other methods tested. Availability: The source code, implemented in C++ on a linux system, is available for download at ftp://ftp.ncbi.nlm.nih.gov/pub/qmbp/qmbp_ms/RAId/RAId_Linux_64Bit
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا