Do you want to publish a course? Click here

PUB-MS - a mass-spectrometry-based method to monitor protein-protein proximity in vivo

358   0   0.0 ( 0 )
 Added by Vasily Ogryzko V
 Publication date 2011
  fields Biology
and research's language is English




Ask ChatGPT about the research

The common techniques to study protein-protein proximity in vivo are not well-adapted to the capabilities and the expertise of a standard proteomics laboratory, typically based on the use of mass spectrometry. With the aim of closing this gap, we have developed PUB-MS (for Proximity Utilizing Biotinylation and Mass Spectrometry), an approach to monitor protein-protein proximity, based on biotinylation of a protein fused to a biotin-acceptor peptide (BAP) by a biotin-ligase, BirA, fused to its interaction partner. The biotinylation status of the BAP can be further detected by either Western analysis or mass spectrometry. The BAP sequence was redesigned for easy monitoring of the biotinylation status by LC-MS/MS. In several experimental models, we demonstrate that the biotinylation in vivo is specifically enhanced when the BAP- and BirA- fused proteins are in proximity to each other. The advantage of mass spectrometry is demonstrated by using BAPs with different sequences in a single experiment (allowing multiplex analysis) and by the use of stable isotopes. Finally, we show that our methodology can be also used to study a specific subfraction of a protein of interest that was in proximity with another protein at a predefined time before the analysis.



rate research

Read More

298 - Gelio Alves , Yi-Kuo Yu 2014
Motivation: Assigning statistical significance accurately has become increasingly important as meta data of many types, often assembled in hierarchies, are constructed and combined for further biological analyses. Statistical inaccuracy of meta data at any level may propagate to downstream analyses, undermining the validity of scientific conclusions thus drawn. From the perspective of mass spectrometry based proteomics, even though accurate statistics for peptide identification can now be achieved, accurate protein level statistics remain challenging. Results: We have constructed a protein ID method that combines peptide evidences of a candidate protein based on a rigorous formula derived earlier; in this formula the database $P$-value of every peptide is weighted, prior to the final combination, according to the number of proteins it maps to. We have also shown that this protein ID method provides accurate protein level $E$-value, eliminating the need of using empirical post-processing methods for type-I error control. Using a known protein mixture, we find that this protein ID method, when combined with the Soric formula, yields accurate values for the proportion of false discoveries. In terms of retrieval efficacy, the results from our method are comparable with other methods tested. Availability: The source code, implemented in C++ on a linux system, is available for download at ftp://ftp.ncbi.nlm.nih.gov/pub/qmbp/qmbp_ms/RAId/RAId_Linux_64Bit
Native electrospray ionization/ion mobility-mass spectrometry (ESI/IM-MS) allows an accurate determination of low-resolution structural features of proteins. Yet, the presence of proton dynamics, observed already by us for DNA in the gas phase, and its impact on protein structural determinants, have not been investigated so far. Here, we address this issue by a multi-step simulation strategy on a pharmacologically relevant peptide, the N-terminal residues of amyloid-beta peptide (Abeta(1-16)). Our calculations reproduce the experimental maximum charge state from ESI-MS and are also in fair agreement with collision cross section (CCS) data measured here by ESI/IM-MS. Although the main structural features are preserved, subtle conformational changes do take place in the first ~0.1 ms of dynamics. In addition, intramolecular proton dynamics processes occur on the ps-timescale in the gas phase as emerging from quantum mechanics/molecular mechanics (QM/MM) simulations at the B3LYP level of theory. We conclude that proton transfer phenomena do occur frequently during fly time in ESI-MS experiments (typically on the ms timescale). However, the structural changes associated with the process do not significantly affect the structural determinants.
Here we present ComPPI, a cellular compartment specific database of proteins and their interactions enabling an extensive, compartmentalized protein-protein interaction network analysis (http://ComPPI.LinkGroup.hu). ComPPI enables the user to filter biologically unlikely interactions, where the two interacting proteins have no common subcellular localizations and to predict novel properties, such as compartment-specific biological functions. ComPPI is an integrated database covering four species (S. cerevisiae, C. elegans, D. melanogaster and H. sapiens). The compilation of nine protein-protein interaction and eight subcellular localization data sets had four curation steps including a manually built, comprehensive hierarchical structure of more than 1600 subcellular localizations. ComPPI provides confidence scores for protein subcellular localizations and protein-protein interactions. ComPPI has user-friendly search options for individual proteins giving their subcellular localization, their interactions and the likelihood of their interactions considering the subcellular localization of their interacting partners. Download options of search results, whole proteomes, organelle-specific interactomes and subcellular localization data are available on its website. Due to its novel features, ComPPI is useful for the analysis of experimental results in biochemistry and molecular biology, as well as for proteome-wide studies in bioinformatics and network science helping cellular biology, medicine and drug design.
Understanding the mathematical properties of graphs underling biological systems could give hints on the evolutionary mechanisms behind these structures. In this article we perform a complete statistical analysis over thousands of graphs representing metabolic and protein-protein interaction (PPI) networks. First, we investigate the quality of fits obtained for the nodes degree distributions to power-law functions. This analysis suggests that a power-law distribution poorly describes the data except for the far right tail in the case of PPI networks. Next we obtain descriptive statistics for the main graph parameters and try to identify the properties that deviate from the expected values had the networks been built by randomly linking nodes with the same degree distribution. This survey identifies the properties of biological networks which are not solely the result of their degree distribution, but emerge from yet unidentified mechanisms other than those that drive these distributions. The findings suggest that, while PPI networks have properties that differ from their expected values in their randomiz
Proteins are an important class of biomolecules that serve as essential building blocks of the cells. Their three-dimensional structures are responsible for their functions. In this thesis we have investigated the protein structures using a network theoretical approach. While doing so we used a coarse-grained method, viz., complex network analysis. We model protein structures at two length scales as Protein Contact Networks (PCN) and as Long-range Interaction Networks (LINs). We found that proteins by virtue of being characterised by high amount of clustering, are small-world networks. Apart from the small-world nature, we found that proteins have another general property, viz., assortativity. This is an interesting and exceptional finding as all other complex networks (except for social networks) are known to be disassortative. Importantly, we could identify one of the major topological determinant of assortativity by building appropriate controls.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا