No Arabic abstract
We present both exact and numerical results for the behavior of the Casimir force in $O(n)$ systems with a finite extension in one direction when the system is subjected to surface fields that induce helicity in the order parameter. We show that for such systems the Casimir force in certain temperature ranges is of the order of $L^{-2}$, both above and below the critical temperature, $T_c$, of the bulk system. An example of such a system would be one with chemically modulated bounding surfaces, in which the modulation couples directly to the systems order parameter. We demonstrate that, depending on the parameters of the system, the Casimir force can be either attractive or repulsive. The exact calculations presented are for the one dimensional $XY$ and Heisenberg models under twisted boundary conditions resulting from finite surface fields that differ in direction by a specified angle and the three dimensional Gaussian model with surface fields in the form of plane waves that are shifted in phase with respect to each other. Additionally, we present exact and numerical results for the mean field version of the three dimensional $O(2)$ model with finite surface fields on the bounding surfaces. We find that all significant results are consistent with the expectations of finite size scaling.
We study critical Casimir forces (CCF) $f_{mathrm C}$ for films of thickness $L$ which in the three-dimensional bulk belong to the Ising universality class and which are exposed to random surface fields (RSF) on both surfaces. We consider the case that, in the absence of RSF, the surfaces of the film belong to the surface universality class of the so-called ordinary transition. We carry out a finite-size scaling analysis and show that for weak disorder CCF still exhibit scaling, acquiring a random field scaling variable $w$ which is zero for pure systems. We confirm these analytic predictions by MC simulations. Moreover, our MC data show that $f_{mathrm C}$ varies as $f_{mathrm C}(wto 0)-f_{mathrm C}(w=0)sim w^2$. Asymptotically, for large $L$, $w$ scales as $w sim L^{-0.26} to 0$ indicating that this type of disorder is an irrelevant perturbation of the ordinary surface universality class. However, for thin films such that $w simeq 1$, we find that the presence of RSF with vanishing mean value increases significantly the strength of CCF, as compared to systems without them, and shifts the extremum of the scaling function of $f_{mathrm C}$ towards lower temperatures. But $f_{mathrm C}$ remains attractive.
The critical Casimir force (CCF) arises from confining fluctuations in a critical fluid and thus it is a fluctuating quantity itself. While the mean CCF is universal, its (static) variance has previously been found to depend on the microscopic details of the system which effectively set a large-momentum cutoff in the underlying field theory, rendering it potentially large. This raises the question how the properties of the force variance are reflected in experimentally observable quantities, such as the thickness of a wetting film or the position of a suspended colloidal particle. Here, based on a rigorous definition of the instantaneous force, we analyze static and dynamic correlations of the CCF for a conserved fluid in film geometry for various boundary conditions within the Gaussian approximation. We find that the dynamic correlation function of the CCF is independent of the momentum cutoff and decays algebraically in time. Within the Gaussian approximation, the associated exponent depends only on the dynamic universality class but not on the boundary conditions. We furthermore consider a fluid film, the thickness of which can fluctuate under the influence of the time-dependent CCF. The latter gives rise to an effective non-Markovian noise in the equation of motion of the film boundary and induces a distinct contribution to the position variance. Within the approximations used here, at short times, this contribution grows algebraically in time whereas, at long times, it saturates and contributes to the steady-state variance of the film thickness.
The Casimir force between bodies in vacuum can be understood as arising from their interaction with an infinite number of fluctuating electromagnetic quantum vacuum modes, resulting in a complex dependence on the shape and material of the interacting objects. Becoming dominant at small separations, the force plays a significant role in nanomechanics and object manipulation at the nanoscale, leading to a considerable interest in identifying structures where the Casimir interaction behaves significantly different from the well-known attractive force between parallel plates. Here we experimentally demonstrate that by nanostructuring one of the interacting metal surfaces at scales below the plasma wavelength, an unexpected regime in the Casimir force can be observed. Replacing a flat surface with a deep metallic lamellar grating with sub-100 nm features strongly suppresses the Casimir force and for large inter-surfaces separations reduces it beyond what would be expected by any existing theoretical prediction.
We show that graphene-dielectric multilayers give rise to an unusual tunability of the Casimir-Lifshitz forces, and allow to easily realize completely different regimes within the same structure. Concerning thermal effects, graphene-dielectric multilayers take advantage from the anomalous features predicted for isolated suspended graphene sheets, even though they are considerably affected by the presence of the dielectric substrate. They can also archive the anomalous non-monotonic thermal metallic behavior by increasing the graphene sheets density and their Fermi energy. In addition to a strong thermal modulation occurring at short separations, in a region where the force is orders of magnitude larger than the one occurring at large distances, the force can be also adjusted by varying the number of graphene layers as well as their Fermi energy levels, allowing for relevant force amplifications which can be tuned, very rapidly and in-situ, by simply applying an electric potential. Our predictions can be relevant for both Casimir experiments and micro/nano electromechanical systems and in new devices for technological applications.
When masless excitations are limited or modified by the presence of material bodies one observes a force atcing between them generally called Casimir force. Such excitations are present in any fluid system close to its true bulk critical point. We derive exact analytical results for both the temperature and external ordering field behavior of the thermodynamic Casimir force within the mean-field Ginzburg-Landau Ising type model of a simple fluid or binary liquid mixture. We investigate the case when under a film geometry the boundaries of the system exhibit strong adsorption onto one of the phases (components) of the system. We present analytical and numerical results for the (temperature-field) surface of the force in both the critical region of the film close to its finite-size or bulk critical points as well as in the capillary condensation regime below the finite-size critical point.