Do you want to publish a course? Click here

Exact results for the temperature-field behavior of the thermodynamic Casimir force in a model of film system with a strong surface adsorption

61   0   0.0 ( 0 )
 Added by Daniel M. Dantchev
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

When masless excitations are limited or modified by the presence of material bodies one observes a force atcing between them generally called Casimir force. Such excitations are present in any fluid system close to its true bulk critical point. We derive exact analytical results for both the temperature and external ordering field behavior of the thermodynamic Casimir force within the mean-field Ginzburg-Landau Ising type model of a simple fluid or binary liquid mixture. We investigate the case when under a film geometry the boundaries of the system exhibit strong adsorption onto one of the phases (components) of the system. We present analytical and numerical results for the (temperature-field) surface of the force in both the critical region of the film close to its finite-size or bulk critical points as well as in the capillary condensation regime below the finite-size critical point.



rate research

Read More

For a thermodynamic system obeying both the equipartition theorem in high temperature and the third law in low temperature, the curve showing relationship between the specific heat and the temperature has two common behaviors: it terminates at zero when the temperature is zero Kelvin and converges to a constant as temperature is higher and higher. Since it is always possible to find the characteristic temperature $T_{C}$ to mark the excited temperature as the specific heat almost reaches the equipartition value, it is reasonable to find a temperature in low temperature interval, complementary to $T_{C}$. The present study reports a possibly universal existence of the such a temperature $vartheta$, defined by that at which the specific heat falls textit{fastest} along with decrease of the temperature. For the Debye model of solids, above the temperature $vartheta$ the Debyes law starts to fail.
We present general arguments and construct a stress tensor operator for finite lattice spin models. The average value of this operator gives the Casimir force of the system close to the bulk critical temperature $T_c$. We verify our arguments via exact results for the force in the two-dimensional Ising model, $d$-dimensional Gaussian and mean spherical model with $2<d<4$. On the basis of these exact results and by Monte Carlo simulations for three-dimensional Ising, XY and Heisenberg models we demonstrate that the standard deviation of the Casimir force $F_C$ in a slab geometry confining a critical substance in-between is $k_b T D(T)(A/a^{d-1})^{1/2}$, where $A$ is the surface area of the plates, $a$ is the lattice spacing and $D(T)$ is a slowly varying nonuniversal function of the temperature $T$. The numerical calculations demonstrate that at the critical temperature $T_c$ the force possesses a Gaussian distribution centered at the mean value of the force $<F_C>=k_b T_c (d-1)Delta/(L/a)^{d}$, where $L$ is the distance between the plates and $Delta$ is the (universal) Casimir amplitude.
81 - Eldad Bettelheim 2021
We study a matrix element of the field operator in the Lieb-Liniger model using the Bethe ansatz technique coupled with a functional approach to compute Slavnov determinants. We obtain the matrix element exactly in the thermodynamic limit for any coupling constant $c$, and compare our results to known semiclassics at the limit $cto0.$
We present an analytical solution of the Ginzburgs $Psi$-theory for the behavior of the Casimir force in a film of $^4$He in equilibrium with its vapor near the superfluid transition point, and we revisit the corresponding experiments in light of our findings. We find reasonably good agreement between the $Psi$-theory predictions and the experimental data. Our calculated force is attractive, and the largest absolute value of the scaling function is $1.848$, while experiment yields $1.30$. The position of the extremum is predicted to be at $x=(L/xi_0)(T/T_lambda-1)^{1/ u}=pi$, while experiment is consistent with $x=3.8$. Here $L$ is the thickness of the film, $T_lambda$ is the bulk critical temperature and $xi_0$ is the correlation length amplitude of the system for $T>T_lambda$.
Recently a nonuniversal character of the leading spatial behavior of the thermodynamic Casimir force has been reported [X. S. Chen and V. Dohm, Phys. Rev. E {bf 66}, 016102 (2002)]. We reconsider the arguments leading to this observation and show that there is no such leading nonuniversal term in systems with short-ranged interactions if one treats properly the effects generated by a sharp momentum cutoff in the Fourier transform of the interaction potential. We also conclude that lattice and continuum models then produce results in mutual agreement independent of the cutoff scheme, contrary to the aforementioned report. All results are consistent with the {em universal} character of the Casimir force in systems with short-ranged interactions. The effects due to dispersion forces are discussed for systems with periodic or realistic boundary conditions. In contrast to systems with short-ranged interactions, for $L/xi gg 1$ one observes leading finite-size contributions governed by power laws in $L$ due to the subleading long-ranged character of the interaction, where $L$ is the finite system size and $xi$ is the correlation length.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا