Do you want to publish a course? Click here

Angle-dependence and optimal design for magnetic bubblecade with maximum speed

78   0   0.0 ( 0 )
 Added by Duck-Ho Kim
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Unidirectional magnetic domain-wall motion is a key concept underlying next-generation application devices. Such motion has been recently demonstrated by applying an alternating magnetic field, resulting in the coherent unidirectional motion of magnetic bubbles. Here we report the optimal configuration of applied magnetic field for the magnetic bubblecade, the coherent unidirectional motion of magnetic bubbles, driven by a tilted alternating magnetic field. The tilted alternating magnetic field induces asymmetric expansion and shrinkage of the magnetic bubbles under the influence of the Dzyaloshinskii-Moriya interaction, resulting in continuous shift of the bubbles in time. By realizing the magnetic bubblecade in PtCoPt films, we find that the bubblecade speed is sensitive to the tilt angle with a maximum at an angle, which can be explained well by a simple analytical form within the context of the domain-wall creep theory. A simplified analytic formula for the angle for maximum speed is then given as a function of the amplitude of the alternating magnetic field. The present observation provides a practical design rule for memory and logic devices based on the magnetic bubblecade.



rate research

Read More

Unidirectional motion of magnetic domain walls is the key concept underlying next-generation domain-wall-mediated memory and logic devices. Such motion has been achieved either by injecting large electric currents into nanowires or by employing domain-wall tension induced by sophisticated structural modulation. Herein, we demonstrate a new scheme without any current injection or structural modulation. This scheme utilizes the recently discovered chiral domain walls, which exhibit asymmetry in their speed with respect to magnetic fields. Because of this asymmetry, an alternating magnetic field results in the coherent motion of the domain walls in one direction. Such coherent unidirectional motion is achieved even for an array of magnetic bubble domains, enabling the design of a new device prototype-magnetic bubblecade memory-with two-dimensional data-storage capability.
We investigated the temperature dependence of the switching current for a perpendicularly magnetized CoFeB film deposited on a nanocrystalline tungsten film with large oxygen content: nc-W(O). The spin Hall angle $|Theta_mathrm{SH}| approx 0.22$ is independent of temperature, whereas the switching current increases strongly at low temperature. We show that the nc-W(O) is insensitive to annealing. It thus can be a good choice for the integration of spin Hall driven writing of information in magnetic memory or logic devices that require a high-temperature annealing process during fabrication.
202 - Zhenyao Tang 2013
In this study, the temperature dependence of the spin Hall angle of palladium (Pd) was experimentally investigated by spin pumping. A Ni80Fe20/Pd bilayer thin film was prepared, and a pure spin current was dynamically injected into the Pd layer. This caused the conversion of the spin current to a charge current owing to the inverse spin Hall effect. It was found that the spin Hall angle varies as a function of temperature, whereby the value of the spin Hall angle increases to ca. 0.02 at 123 K.
We present a high resolution method for measuring magnetostriction in millisecond pulsed magnetic fields at cryogenic temperatures with a sensitivity of $1.11times10^{-11}/sqrt{rm Hz}$. The sample is bonded to a thin piezoelectric plate, such that when the samples length changes, it strains the piezoelectric and induces a voltage change. This method is more sensitive than a fiber-Bragg grating method. It measures two axes simultaneously instead of one. The gauge is small and versatile, functioning in DC and millisecond pulsed magnetic fields. We demonstrate its use by measuring the magnetostriction of Ca$_3$Co$_{1.03}$Mn$_{0.97}$O$_6$ single crystals in pulsed magnetic fields. By comparing our data to new and previously published results from a fiber-Bragg grating magnetostriction setup, we confirm that this method detects magnetostriction effects. We also demonstrate the small size and versatility of this technique by measuring angle dependence with respect to the applied magnetic field in a rotator probe in 65 T millisecond pulsed magnetic fields.
340 - Z. S. Lim , A. Ariando 2020
Several challenges in designing an operational Skyrmion racetrack memory are well-known. Among those challenges, a few contradictions can be identified if researchers were to rely only on metallic materials. Hence, expanding the exploration on Skyrmion Physics into oxide materials is essential to bridge the contradicting gap. In this topical review, we first briefly revise the theories and criteria involved in stabilizing and manipulating Skymions, followed by studying the behaviors of dipolar-stabilized magnetic bubbles. Next, we explore the properties of multiferroic Skyrmions with magnetoelectric coupling, which can only be stabilized in Cu$_2$OSeO$_3$ thus far, as well as the rare bulk Neel-type Skyrmions in some polar materials. As an interlude section, we review the theory of Anomalous (AHE) and Topological Hall Effect (THE), before going through the recent progress of THE in oxide thin films. The debate about an alternative interpretation is also discussed. Finally, this review ends with future outlooks about the promising strategies of using interfacial charge-transfer and (111)-orientation of perovskites to benefit the field of Skyrmion research.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا