No Arabic abstract
Cooling oxygen-deficient strontium titanate to liquid-helium temperature leads to a decrease in its electrical resistivity by several orders of magnitude. The temperature dependence of resistivity follows a rough T$^{3}$ behavior before becoming T$^{2}$ in the low-temperature limit, as expected in a Fermi liquid. Here, we show that the roughly cubic resistivity above 100K corresponds to a regime where the quasi-particle mean-free-path is shorter than the electron wave-length and the interatomic distance. These criteria define the Mott-Ioffe-Regel limit. Exceeding this limit is the hallmark of strange metallicity, which occurs in strontium titanate well below room temperature, in contrast to other perovskytes. We argue that the T$^{3}$-resistivity cannot be accounted for by electron-phonon scattering `{a} la Bloch-Gruneisen and consider an alternative scheme based on Landauer transmission between individual dopants hosting large polarons. We find a scaling relationship between the carrier mobility, the electric permittivity and the frequency of transverse optical soft mode in this temperature range. Providing an account of this observation emerges as a challenge to theory.
We report torque magnetometry measurements of an oxide heterostructure consisting of an amorphous Al$_2$O$_3$ thin film grown on a crystalline SrTiO$_3$ substrate ($a$-AO/STO) by atomic layer deposition. We find a torque response that resembles previous studies of crystalline LaAlO$_3$/SrTiO$_3$ (LAO/STO) heterointerfaces, consistent with strongly anisotropic magnetic ordering in the plane of the interface. Unlike crystalline LAO, amorphous Al$_2$O$_3$ is nonpolar, indicating that planar magnetism at an oxide interface is possible without the strong internal electric fields generated within the polarization catastrophe model. We discuss our results in the context of current theoretical efforts to explain magnetism in crystalline LAO/STO.
We report measurements of the thermal Hall effect in single crystals of both pristine and isotopically substituted strontium titanate. We discovered a two orders of magnitude difference in the thermal Hall conductivity between $SrTi^{16}O_3$ and $^{18}O$-enriched $SrTi^{18}O_3$ samples. In most temperature ranges, the magnitude of thermal Hall conductivity ($kappa_{xy}$) in $SrTi^{18}O_3$ is proportional to the magnitude of the longitudinal thermal conductivity ($kappa_{xx}$), which suggests a phonon-mediated thermal Hall effect. However, they deviate in the temperature of their maxima, and the thermal Hall angle ratio ($|kappa_{xy}/kappa_{xx}|$) shows anomalously decreasing behavior below the ferroelectric Curie temperature $T_c$ ~$25 K$. This observation suggests a new underlying mechanism, as the conventional scenario cannot explain such differences within the slight change in phonon spectrum. Notably, the difference in magnitude of thermal Hall conductivity and rapidly decreasing thermal Hall angle ratio in $SrTi^{18}O_3$ is correlated with the strength of quantum critical fluctuations in this displacive ferroelectric. This relation points to a link between the quantum critical physics of strontium titanate and its thermal Hall effect, a possible clue to explain this example of an exotic phenomenon in non-magnetic insulating systems.
Strontium titanate (SrTiO$_3$) is a foundational material in the emerging field of complex oxide electronics. While its electronic and optical properties have been studied for decades, SrTiO$_3$ has recently become a renewed materials research focus catalyzed in part by the discovery of magnetism and superconductivity at interfaces between SrTiO$_3$ and other oxides. The formation and distribution of oxygen vacancies may play an essential but as-yet-incompletely understood role in these effects. Moreover, recent signatures of magnetization in gated SrTiO$_3$ have further galvanized interest in the emergent properties of this nominally nonmagnetic material. Here we observe an optically induced and persistent magnetization in oxygen-deficient SrTiO$_{3-delta}$ using magnetic circular dichroism (MCD) spectroscopy and SQUID magnetometry. This zero-field magnetization appears below ~18K, persists for hours below 10K, and is tunable via the polarization and wavelength of sub-bandgap (400-500nm) light. These effects occur only in oxygen-deficient samples, revealing the detailed interplay between magnetism, lattice defects, and light in an archetypal oxide material.
We investigated the ferroelectric properties of strontium titanate (STO) thin films deposited on SrTiO3 (001) substrate with SrRuO3 electrodes. The STO layer was grown coherently on the SrTiO3 substrate without in-plane lattice relaxation, but its out-of-plane lattice constant increased with a decrease in the oxygen pressure during deposition. Using piezoresponse force microscopy and P-V measurements, we showed that our tetragonal STO films possess room-temperature ferroelectricity. We discuss the possible origins of the observed ferroelectricity.
When an electronic system is subjected to a sufficiently strong magnetic field that the cyclotron energy is much larger than the Fermi energy, the system enters the extreme quantum limit (EQL) and becomes susceptible to a number of instabilities. Bringing a three-dimensional electronic system deeply into the EQL can be difficult, however, since it requires a small Fermi energy, large magnetic field, and low disorder. Here we present an experimental study of the EQL in lightly-doped single crystals of strontium titanate, which remain good bulk conductors down to very low temperatures and high magnetic fields. Our experiments probe deeply into the regime where theory has long predicted electron-electron interactions to drive the system into a charge density wave or Wigner crystal state. A number of interesting features arise in the transport in this regime, including a striking re-entrant nonlinearity in the current-voltage characteristics and a saturation of the quantum-limiting field at low carrier density. We discuss these features in the context of possible correlated electron states, and present an alternative picture based on magnetic-field induced puddling of electrons.