Do you want to publish a course? Click here

Observation of room-temperature ferroelectricity in tetragonal strontium titanate thin films on SrTiO3 (001) substrates

161   0   0.0 ( 0 )
 Added by Yong Su Kim
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigated the ferroelectric properties of strontium titanate (STO) thin films deposited on SrTiO3 (001) substrate with SrRuO3 electrodes. The STO layer was grown coherently on the SrTiO3 substrate without in-plane lattice relaxation, but its out-of-plane lattice constant increased with a decrease in the oxygen pressure during deposition. Using piezoresponse force microscopy and P-V measurements, we showed that our tetragonal STO films possess room-temperature ferroelectricity. We discuss the possible origins of the observed ferroelectricity.



rate research

Read More

Spintronics exploits the magnetoresistance effects to store or sense the magnetic information. Since the magnetoresistance strictly depends on the magnetic anisotropy of the system, it is fundamental to set a defined anisotropy to the system. Here, we investigate by means of vectorial Magneto-Optical Kerr Magnetometry (v-MOKE), half-metallic La0.67Sr0.33MnO3 (LSMO) thin films that exhibit at room temperature pure biaxial magnetic anisotropy if grown onto MgO (001) substrate with a thin SrTiO3 (STO) buffer. In this way, we can avoid unwanted uniaxial magnetic anisotropy contributions that may be detrimental for specific applications. The detailed study of the angular evolution of the magnetization reversal pathways, critical fields (coercivity and switching) allows for disclosing the origin of the magnetic anisotropy, which is magnetocrystalline in nature and shows four-fold symmetry at any temperature.
Ferroelectricity at room temperature has been demonstrated in nanometer-thin quasi 2D croconic acid thin films, by the polarization hysteresis loop measurements in macroscopic capacitor geometry, along with observation and manipulation of the nanoscale domain structure by piezoresponse force microscopy. The fabrication of continuous thin films of the hydrogen-bonded croconic acid was achieved by the suppression of the thermal decomposition using low evaporation temperatures in high vacuum, combined with growth conditions far from thermal equilibrium. For nominal coverages >=20 nm, quasi 2D and polycrystalline films, with an average grain size of 50-100 nm and 3.5 nm roughness, can be obtained. Spontaneous ferroelectric domain structures of the thin films have been observed and appear to correlate with the grain patterns. The application of this solvent-free growth protocol may be a key to the development of flexible organic ferroelectric thin films for electronic applications.
312 - Yong Su Kim , J. Kim , S. J. Moon 2008
Several defect configurations including oxygen vacancies have been investigated as possible origins of the reported room-temperature ferroelectricity of strontium titanate (STO) thin films [Appl. Phys. Letts. 91, 042908 (2007)]. First-principles calculations revealed that the Sr-O-O vacancy complexes create deep localized states in the band gap of SrTiO3 without affecting its insulating property. These results are in agreement with electronic structural changes determined from optical transmission and X-ray absorption measurements. This work opens the way to exploiting oxygen vacancies and their complexes as a source of ferroelectricity in perovskite oxide thin films, including STO.
TbMnO$_{3}$ films have been grown under compressive strain on (001)-oriented SrTiO$_{3}$ crystals. They have an orthorhombic structure and display the (001) orientation. With increasing thickness, the structure evolves from a more symmetric (tetragonal) to a less symmetric (bulk-like orthorhombic) structure, while keeping constant the in-plane compression thereby leaving the out-of-plane lattice spacing unchanged. The domain microstructure of the films is also revealed, showing an increasing number of orthorhombic domains as the thickness is decreased: we directly observe ferroelastic domains as narrow as 4nm. The high density of domain walls may explain the induced ferromagnetism observed in the films, while both the decreased anisotropy and the small size of the domains could account for the absence of a ferroelectric spin spiral phase.
The Landau theory of phase transitions of Ba0.8Sr0.2TiO3 thin film under external electric field applied in the planar geometry is developed. The interfacial van-der-Waals field Ez=1.1x10^8 V/m oriented normal to the film-substrate interface was introduced in to the model calculation to explain experimentally observed behavior of the polarization as a function of planar electric field. The Ez - misfit strain phase diagram of the film is constructed and discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا