Do you want to publish a course? Click here

Online $^{222}$Rn removal by cryogenic distillation in the XENON100 experiment

93   0   0.0 ( 0 )
 Added by Michael Murra
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column is integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant $^{222}$Rn background originating from radon emanation. After inserting an auxiliary $^{222}$Rn emanation source in the gas loop, we determined a radon reduction factor of R > 27 (95% C.L.) for the distillation column by monitoring the $^{222}$Rn activity concentration inside the XENON100 detector.



rate research

Read More

The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In this work, we present the $^{222}$Rn emanation measurements performed for the XENON1T dark matter experiment. Together with the bulk impurity screening campaign, the results enabled us to select the radio-purest construction materials, targeting a $^{222}$Rn activity concentration of 10 $mu$Bq/kg in 3.2 t of xenon. The knowledge of the distribution of the $^{222}$Rn sources allowed us to selectively eliminate critical components in the course of the experiment. The predictions from the emanation measurements were compared to data of the $^{222}$Rn activity concentration in XENON1T. The final $^{222}$Rn activity concentration of (4.5 $pm$ 0.1) $mu$Bq/kg in the target of XENON1T is the lowest ever achieved in a xenon dark matter experiment.
In this work, the $^{222}$Rn contamination mechanisms on acrylic surfaces have been investigated. $^{222}$Rn can represent a significant background source for low-background experiments, and acrylic is a suitable material for detector design thanks to its purity and transparency. Four acrylic samples have been exposed to a $^{222}$Rn rich environment for different time periods, being contaminated by $^{222}$Rn and its progenies. Subsequently, the time evolution of radiocontaminants activity on the samples has been evaluated with $alpha$ and $gamma$ measurements, highlighting the role of different decay modes in the contamination process. A detailed analysis of the alpha spectra allowed to quantify the implantation depth of the contaminants. Moreover, a study of both $alpha$ and $gamma$ measurements pointed out the $^{222}$Rn diffusion inside the samples.
112 - Y. P. Zhang , J. C. Liu , C. Guo 2017
The radioactive noble gas $^{222}$Rn, which can be dissolved in water, is an important background source for JUNO. In this paper, based on the water system of JUNO prototype, two kinds of high sensitivity radon detectors have been proposed and developed. The sensitivity of Si-PIN Rn detector, which uses a Si-PIN photodiode to detect the $alpha$ from $^{214}$Po decay, is $sim$9.0~mBq/m$^3$. The sensitivity of LS Rn detector, which uses liquid scintillator to detect the coincident signals of $beta$ from $^{214}$Bi decay and $alpha$ from $^{214}$Po decay, is $sim$64.0~mBq/m$^3$. Both of the two kinds of Rn detector have the potential to be developed as an online Rn concentration monitoring equipment for JUNO veto detector.
An online cryogenic distillation system for the removal of krypton and radon from xenon was designed and constructed for PandaX-4T, a highly sensitive dark matter detection experiment. The krypton content in a commercial xenon product is expected to be reduced by 7 orders of magnitude with 99% xenon collection efficiency at a flow rate of 10 kg/h by design. The same system can reduce radon content in xenon by reversed operation, with an expected radon reduction factor of about 1.8 in PandaX-4T under a flow rate of 56.5 kg/h. The commissioning of this system was completed, with krypton and radon operations tested under respective working conditions. The krypton concentration of the product xenon was measured with an upper limit of 8.0 ppt.
In this paper, we describe the XENON100 data analyses used to assess the target-intrinsic background sources radon ($^{222}$Rn), thoron ($^{220}$Rn) and krypton ($^{85}$Kr). We detail the event selections of high-energy alpha particles and decay-specific delayed coincidences. We derive distributions of the individual radionuclides inside the detector and quantify their abundances during the main three science runs of the experiment over a period of $sim$ 4 years, from January 2010 to January 2014. We compare our results to external measurements of radon emanation and krypton concentrations where we find good agreement. We report an observed reduction in concentrations of radon daughters that we attribute to the plating-out of charged ions on the negatively biased cathode.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا