No Arabic abstract
Polycrystalline Mn 5 Ge 3 thin films were produced on SiO 2 using magnetron sputtering and reactive diffusion (RD) or non-diffusive reaction (NDR). In situ X-ray diffraction and atomic force microscopy were used to determine the layer structures, and magnetic force microscopy, superconducting quantum interference device and ferromagnetic resonance were used to determine their magnetic properties. RD-mediated layers exhibit similar magnetic properties as MBE-grown monocrystalline Mn 5 Ge 3 thin films, while NDR-mediated layers show magnetic properties similar to monocrystalline C-doped Mn 5 Ge 3 C x thin films with $0.1 leq x leq 0.2.$ NDR appears as a CMOS-compatible efficient method to produce good magnetic quality high-curie temperature Mn 5 Ge 3 thin films.
When comparing a set of La0.67Sr0.33MnO3 (LSMO) samples, the Curie temperature (TC) of the samples is an important figure of merit for the sample quality. Therefore, a reliable method to determine TC is required. Here, a method based on the analysis of the magnetization loops is proposed.
We study the effects of growth temperature, Ga:As ratio and post-growth annealing procedure on the Curie temperature, Tc, of (Ga,Mn)As layers grown by molecular beam epitaxy. We achieve the highest Tc values for growth temperatures very close to the 2D-3D phase boundary. The increase in Tc, due to the removal of interstitial Mn by post growth annealing, is counteracted by a second process which reduces Tc and which is more effective at higher annealing temperatures. Our results show that it is necessary to optimize the growth parameters and post growth annealing procedure to obtain the highest Tc.
We report a clear correspondence between changes in the Curie temperature and carrier density upon annealing in epitaxially grown (Ga,Mn)As layers with thicknesses in the range between 5 nm and 20 nm. The changes are dependent on the layer thickness, indicating that the (Ga,Mn)As - GaAs interface has importance for the physical properties of the (Ga,Mn)As layer. The magnetoresistance shows additional features when compared to thick (Ga,Mn)As layers, that are at present of unknown origin.
Noncollinear antiferromagnets with a D0$_{19}$ (space group = 194, P6$_{3}$/mmc) hexagonal structure have garnered much attention for their potential applications in topological spintronics. Here, we report the deposition of continuous epitaxial thin films of such a material, Mn$_{3}$Sn, and characterize their crystal structure using a combination of x-ray diffraction and transmission electron microscopy. Growth of Mn$_{3}$Sn films with both (0001) c-axis orientation and (40$bar{4}$3) texture is achieved. In the latter case, the thin films exhibit a small uncompensated Mn moment in the basal plane, quantified via magnetometry and x-ray magnetic circular dichroism experiments. This cannot account for the large anomalous Hall effect simultaneously observed in these films, even at room temperature, with magnitude $sigma_{mathrm{xy}}$ ($mu_{0}H$ = 0 T) = 21 $mathrm{Omega}^{-1}mathrm{cm}^{-1}$ and coercive field $mu_{0}H_{mathrm{C}}$ = 1.3 T. We attribute the origin of this anomalous Hall effect to momentum-space Berry curvature arising from the symmetry-breaking inverse triangular spin structure of Mn$_{3}$Sn. Upon cooling through the transition to a glassy ferromagnetic state at around 50 K, a peak in the Hall resistivity close to the coercive field indicates the onset of a topological Hall effect contribution, due to the emergence of a scalar spin chirality generating a real-space Berry phase. We demonstrate that the polarity of this topological Hall effect, and hence the chiral-nature of the noncoplanar magnetic structure driving it, can be controlled using different field cooling conditions.
Taking the non-collinear antiferromagnetic hexagonal Heusler compound Mn$_3$Ge as a reference system, the contributions to linear response phenomena arising solely from the chiral coplanar and non-coplanar spin configurations are investigated. Orbital moments, X-ray absorption, anomalous and spin Hall effects, as well as corresponding spin-orbit torques and Edelstein polarizations are studied depending on a continuous variation of the polar angle relative to the Kagome planes of corner-sharing triangles between the non-collinear antiferromagnetic and the ferromagnetic limits. By scaling the speed of light from the relativistic Dirac case to the non-relativistic limit the chirality-induced or topological contributions can be identified by suppressing the spin-orbit coupling.