Do you want to publish a course? Click here

Galaxies grow their bulges and black holes in diverse ways

73   0   0.0 ( 0 )
 Added by Eric F. Bell
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Galaxies with Milky Way-like stellar masses have a wide range of bulge and black hole masses; in turn, these correlate with other properties such as star formation history. While many processes may drive bulge formation, major and minor mergers are expected to play a crucial role. Stellar halos offer a novel and robust measurement of galactic merger history; cosmologically-motivated models predict that mergers with larger satellites produce more massive, higher metallicity stellar halos, reproducing the recently-observed stellar halo metallicity-mass relation. We quantify the relationship between stellar halo mass and bulge or black hole prominence using a sample of eighteen Milky Way-mass galaxies with newly-available measurements of (or limits on) stellar halo properties. There is an order of magnitude range in bulge mass, and two orders of magnitude in black hole mass, at a given stellar halo mass (or, equivalently, merger history). Galaxies with low mass bulges show a wide range of quiet merger histories, implying formation mechanisms that do not require intense merging activity. Galaxies with massive classical bulges and central black holes also show a wide range of merger histories. While three of these galaxies have massive stellar halos consistent with a merger origin, two do not - merging appears to have had little impact in making these two massive classical bulges. Such galaxies may be ideal laboratories to study massive bulge formation through pathways such as early gas-rich accretion, violent disk instabilities or misaligned infall of gas throughout cosmic time.



rate research

Read More

113 - Gerold Busch 2016
In the last decades several correlations between the mass of the central supermassive black hole (BH) and properties of the host galaxy - such as bulge luminosity and mass, central stellar velocity dispersion, Sersic index, spiral pitch angle etc. - have been found and point at a coevolution scenario of BH and host galaxy. In this article, I review some of these relations for inactive galaxies and discuss the findings for galaxies that host an active galactic nucleus/quasar. I present the results of our group that finds that active galaxies at $zlesssim 0.1$ do not follow the BH mass - bulge luminosity relation. Furthermore, I show near-infrared integral-field spectroscopic data that suggest that young stellar populations cause the bulge overluminosity and indicate that the host galaxy growth started first. Finally, I discuss implications for the BH-host coevolution.
We present a study of 41 dwarf galaxies hosting active massive black holes (BHs) using Hubble Space Telescope observations. The host galaxies have stellar masses in the range of $M_star sim 10^{8.5}-10^{9.5}~M_odot$ and were selected to host active galactic nuclei (AGNs) based on narrow emission line ratios derived from Sloan Digital Sky Survey spectroscopy. We find a wide range of morphologies in our sample including both regular and irregular dwarf galaxies. We fit the HST images of the regular galaxies using GALFIT and find that the majority are disk-dominated with small pseudobulges, although we do find a handful of bulge-like/elliptical dwarf galaxies. We also find an unresolved source of light in all of the regular galaxies, which may indicate the presence of a nuclear star cluster and/or the detection of AGN continuum. Three of the galaxies in our sample appear to be Magellanic-type dwarf irregulars and two galaxies exhibit clear signatures of interactions/mergers. This work demonstrates the diverse nature of dwarf galaxies hosting optically-selected AGNs. It also has implications for constraining the origin of the first BH seeds using the local BH occupation fraction at low masses -- we must account for the various types of dwarf galaxies that may host BHs.
223 - Philip F. Hopkins 2021
Previous studies of fueling black holes (BHs) in galactic nuclei have argued (on scales ~0.01-1000pc) accretion is dynamical with inflow rates $dot{M}simeta,M_{rm gas}/t_{rm dyn}$ in terms of gas mass $M_{rm gas}$, dynamical time $t_{rm dyn}$, and some $eta$. But these models generally neglected expulsion of gas by stellar feedback, or considered extremely high densities where expulsion is inefficient. Studies of star formation, however, have shown on sub-kpc scales the expulsion efficiency $f_{rm wind}=M_{rm ejected}/M_{rm total}$ scales with the gravitational acceleration as $(1-f_{rm wind})/f_{rm wind}simbar{a}_{rm grav}/langledot{p}/m_{ast}ranglesim Sigma_{rm eff}/Sigma_{rm crit}$ where $bar{a}_{rm grav}equiv G,M_{rm tot}(<r)/r^{2}$ and $langledot{p}/m_{ast}rangle$ is the momentum injection rate from young stars. Adopting this as the simplest correction for stellar feedback, $eta rightarrow eta,(1-f_{rm wind})$, we show this provides a more accurate description of simulations with stellar feedback at low densities. This has immediate consequences, predicting e.g. the slope and normalization of the $M-sigma$ and $M-M_{rm bulge}$ relation, $L_{rm AGN}-$SFR relations, and explanations for outliers in compact Es. Most strikingly, because star formation simulations show expulsion is efficient ($f_{rm wind}sim1$) below total-mass surface density $M_{rm tot}/pi,r^{2}<Sigma_{rm crit}sim3times10^{9},M_{odot},{rm kpc^{-2}}$ (where $Sigma_{rm crit}=langledot{p}/m_{ast}rangle/(pi,G)$), BH mass is predicted to specifically trace host galaxy properties above a critical surface brightness $Sigma_{rm crit}$ (B-band $mu_{rm B}^{rm crit}sim 19,{rm mag,arcsec^{-2}}$). This naturally explains why BH masses preferentially reflect bulge properties or central surface-densities ($Sigma_{1,{rm kpc}}$), not total galaxy properties.
The dynamics of massive black holes (BHs) in galaxy mergers is a rich field of research that has seen much progress in recent years. In this contribution we briefly review the processes describing the journey of BHs during mergers, from the cosmic context all the way to when BHs coalesce. If two galaxies each hosting a central BH merge, the BHs would be dragged towards the center of the newly formed galaxy. If/when the holes get sufficiently close, they coalesce via the emission of gravitational waves. How often two BHs are involved in galaxy mergers depends crucially on how many galaxies host BHs and on the galaxy merger history. It is therefore necessary to start with full cosmological models including BH physics and a careful dynamical treatment. After galaxies have merged, however, the BHs still have a long journey until they touch and coalesce. Their dynamical evolution is radically different in gas-rich and gas-poor galaxies, leading to a sort of dichotomy between high-redshift and low-redshift galaxies, and late-type and early-type, typically more massive galaxies.
The mass estimator used to calculate black hole (BH) masses in broad-line active galactic nuclei (AGNs) relies on a virial coefficient (the $f$ factor) that is determined by comparing reverberation-mapped (RM) AGNs with measured bulge stellar velocity dispersions against the $M_{rm BH}-sigma_*$ relation of inactive galaxies. It has recently been recognized that only classical bulges and ellipticals obey a tight $M_{rm BH}-sigma_*$ relation; pseudobulges have a different zero point and much larger scatter. Motivated by these developments, we reevaluate the $f$ factor for RM AGNs with available $sigma_*$ measurements, updated H$beta$ RM lags, and new bulge classifications based on detailed decomposition of high-resolution ground-based and space-based images. Separate calibrations are provided for the two bulge types, whose virial coefficients differ by a factor of $sim 2$: $f=6.3pm1.5$ for classical bulges and ellipticals and $f = 3.2pm0.7$ for pseudobulges. The structure and kinematics of the broad-line region, at least as crudely encoded in the $f$ factor, seems to related to the large-scale properties or formation history of the bulge. Lastly, we investigate the bulge stellar masses of the RM AGNs, show evidence for recent star formation in the AGN hosts that correlates with Eddington ratio, and discuss the potential utility of the $M_{rm BH}-M_{rm bulge}$ relation as a more promising alternative to the conventionally used $M_{rm BH}-sigma_*$ relation for future refinement of the virial mass estimator for AGNs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا