Do you want to publish a course? Click here

Verification theorems for stochastic optimal control problems in Hilbert spaces by means of a generalized Dynkin formula

322   0   0.0 ( 0 )
 Added by Salvatore Federico
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Verification theorems are key results to successfully employ the dynamic programming approach to optimal control problems. In this paper we introduce a new method to prove verification theorems for infinite dimensional stochastic optimal control problems. The method applies in the case of additively controlled Ornstein-Uhlenbeck processes, when the associated Hamilton-Jacobi-Bellman (HJB) equation admits a mild solution. The main methodological novelty of our result relies on the fact that it is not needed to prove, as in previous literature, that the mild solution is a strong solution, i.e. a suitable limit of classical solutions of the HJB equation. To achieve our goal we prove a new type of Dynkin formula, which is the key tool for the proof of our main result.



rate research

Read More

In this article, we derive first-order necessary optimality conditions for a constrained optimal control problem formulated in the Wasserstein space of probability measures. To this end, we introduce a new notion of localised metric subdifferential for compactly supported probability measures, and investigate the intrinsic linearised Cauchy problems associated to non-local continuity equations. In particular, we show that when the velocity perturbations belong to the tangent cone to the convexification of the set of admissible velocities, the solutions of these linearised problems are tangent to the solution set of the corresponding continuity inclusion. We then make use of these novel concepts to provide a synthetic and geometric proof of the celebrated Pontryagin Maximum Principle for an optimal control problem with inequality final-point constraints. In addition, we propose sufficient conditions ensuring the normality of the maximum principle.
95 - Jingrui Sun , Zhen Wu , Jie Xiong 2021
This paper is concerned with a backward stochastic linear-quadratic (LQ, for short) optimal control problem with deterministic coefficients. The weighting matrices are allowed to be indefinite, and cross-product terms in the control and state processes are present in the cost functional. Based on a Hilbert space method, necessary and sufficient conditions are derived for the solvability of the problem, and a general approach for constructing optimal controls is developed. The crucial step in this construction is to establish the solvability of a Riccati-type equation, which is accomplished under a fairly weak condition by investigating the connection with forward stochastic LQ optimal control problems.
We establish a generalization of Noether theorem for stochastic optimal control problems. Exploiting the tools of jet bundles and contact geometry, we prove that from any (contact) symmetry of the Hamilton-Jacobi-Bellman equation associated to an optimal control problem it is possible to build a related local martingale. Moreover, we provide an application of the theoretical results to Mertons optimal portfolio problem, showing that this model admits infinitely many conserved quantities in the form of local martingales.
This paper deals with a family of stochastic control problems in Hilbert spaces which arises in typical applications (such as boundary control and control of delay equations with delay in the control) and for which is difficult to apply the dynamic programming approach due to the unboudedness of the control operator and to the lack of regularity of the underlying transition semigroup. We introduce a specific concept of partial derivative, designed for this situation, and we develop a method to prove that the associated HJB equation has a solution with enough regularity to find optimal controls in feedback form.
Scenario-based stochastic optimal control problems suffer from the curse of dimensionality as they can easily grow to six and seven figure sizes. First-order methods are suitable as they can deal with such large-scale problems, but may fail to achieve accurate solutions within a reasonable number of iterations. To achieve solutions of higher accuracy and high speed, in this paper we propose two proximal quasi-Newtonian limited-memory algorithms - MinFBE applied to the dual problem and the Newton-type alternating minimization algorithm (NAMA) - which can be massively parallelized on lockstep hardware such as graphics processing units (GPUs). We demonstrate the performance of these methods, in terms of convergence speed and parallelizability, on large-scale problems involving millions of variables.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا