Do you want to publish a course? Click here

The Short Term Stability of a Simulated Differential Astrometric Reference Frame in the Gaia era

79   0   0.0 ( 0 )
 Added by Ummi Abbas Dr
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use methods of differential astrometry to construct a small field inertial reference frame stable at the micro-arcsecond level. Such a high level of astrometric precision can be expected with the end-of-mission standard errors to be achieved with the Gaia space satellite using global astrometry. We harness Gaia measurements of field angles and look at the influence of the number of reference stars and the stars magnitude as well as astrometric systematics on the total error budget with the help of Gaia-like simulations around the Ecliptic Pole in a differential astrometric scenario. We find that the systematic errors are modeled and reliably estimated to the $mu$as level even in fields with a modest number of 37 stars with G $<$13 mag over a 0.24 sq.degs. field of view for short time scales of the order of a day with high-cadence observations such as those around the North Ecliptic Pole during the EPSL scanning mode of Gaia for a perfect instrument. The inclusion of the geometric instrument model over such short time scales accounting for large-scale calibrations requires fainter stars down to G = 14 mag without diminishing the accuracy of the reference frame. We discuss several future perspectives of utilizing this methodology over different and longer timescales.

rate research

Read More

76 - Ummi Abbas 2019
We employ differential astrometric methods to establish a small field reference frame stable at the micro-arcsecond ($mu$as) level on short timescales using high-cadence simulated observations taken by Gaia in February 2017 of a bright star close to the limb of Jupiter, as part of the relativistic experiment on Jupiters quadrupole. We achieve sub$mu$as-level precision along scan through a suitable transformation of the field angles into a small-field tangent plane and a least-squares fit over several overlapping frames for estimating the plate and geometric calibration parameters with tens of reference stars that lie within $sim$0.5 degs from the target star, assuming perfect knowledge of stellar proper motions and parallaxes. Furthermore, we study the effects of unmodeled astrometric parameters on the residuals and find that proper motions have a stronger effect than unmodeled parallaxes. For e.g., unmodeled Gaia DR2 proper motions introduce extra residuals of $sim$23$mu$as (AL) and 69$mu$as (AC) versus the $sim$5$mu$as (AL) and 17$mu$as (AC) due to unmodeled parallaxes. On the other hand, assuming catalog errors in the proper motions such as those from Gaia DR2 has a minimal impact on the stability introducing sub$mu$as and $mu$as level residuals in the along and across scanning direction, respectively. Finally, the effect of a coarse knowledge in the satellite velocity components (with time dependent errors of 10$mu$as) is capable of enlarging the size of the residuals to roughly 0.2 mas.
As part of the data processing for Gaia Data Release~1 (Gaia DR1) a special astrometric solution was computed, the so-called auxiliary quasar solution. This gives positions for selected extragalactic objects, including radio sources in the second realisation of the International Celestial Reference Frame (ICRF2) that have optical counterparts bright enough to be observed with Gaia. A subset of these positions was used to align the positional reference frame of Gaia DR1 with the ICRF2. We describe the properties of the Gaia auxiliary quasar solution for a subset of sources matched to ICRF2, and compare their optical and radio positions at the sub-mas level. Their formal standard errors are better than 0.76~milliarcsec (mas) for 50% of the sources and better than 3.35~mas for 90%. Optical magnitudes are obtained in Gaias unfiltered photometric G band. The comparison with the radio positions of the defining sources shows no systematic differences larger than a few tenths of a mas. The fraction of questionable solutions, not readily accounted for by the statistics, is less than 6%. Normalised differences have extended tails requiring case-by-case investigations for around 100 sources, but we have not seen any difference indisputably linked to an optical-radio offset in the sources.
The second release of Gaia data (Gaia DR2) contains the astrometric parameters for more than half a million quasars. This set defines a kinematically non-rotating reference frame in the optical domain referred to as the Gaia-CRF2. The Gaia-CRF2 is the first realisation of a non-rotating global optical reference frame that meets the ICRS prescriptions, meaning that it is built only on extragalactic sources. It consists of the positions of a sample of 556 869 sources in Gaia DR2, obtained from a positional cross-match with the ICRF3-prototype and AllWISE AGN catalogues. The sample constitutes a clean, dense, and homogeneous set of extragalactic point sources in the magnitude range G from 16 to 21 mag with accurately known optical positions. The median positional uncertainty is 0.12 mas for G < 18 mag and 0.5 mas at G = 20 mag. Large-scale systematics are estimated to be in the range 20 to 30 muas. The accuracy claims are supported by the parallaxes and proper motions of the quasars in Gaia DR2. The optical positions for a subset of 2820 sources in common with the ICRF3-prototype show very good overall agreement with the radio positions, but several tens of sources have significantly discrepant positions.
58 - Lennart Lindegren 2019
Positions and proper motions of Gaia sources are expressed in a reference frame that ideally should be non-rotating relative to distant extragalactic objects, coincident with the International Celestial Reference System (ICRS), and consistent across all magnitudes. For sources fainter than 16th magnitude this is achieved thanks to Gaias direct observations of quasars. At brighter magnitudes it is difficult to validate the quality of the reference frame due to the scarcity of comparison data. This paper examines the use of VLBI observations of radio stars to determine the spin and orientation of the bright reference frame of Gaia. Simultaneous estimation of the six spin and orientation parameters makes optimal use of VLBI data and makes it possible to include even single-epoch VLBI observations in the solution. The method is applied to Gaia Data Release 2 (DR2) using published VLBI data for 41 radio stars. Results for the 26 best-fitting sources indicate that the bright reference frame of Gaia DR2 is rotating relative to the faint quasars at a rate of about 0.1 mas/yr, significant at 2-sigma level. This supports a similar conclusion based on a comparison with stellar positions in the Hipparcos frame. The accuracy is currently limited by the small number of radio sources used, by uncertainties in the Gaia DR2 proper motions, and by the astrophysical nature of the radio stars. While the origin of the indicated rotation is understood and can be avoided in future data releases, it remains important to validate the bright reference frame of Gaia by independent observations. This can be achieved using VLBI astrometry, which may require re-observing the old sample of radio stars as well as measuring new objects. The unique historical value of positional measurements is stressed and VLBI observers are urged to ensure that relevant positional information is preserved for the future.
We investigate the capabilities of the ESA Gaia mission for detecting and character- izing short timescale variability, from tens of seconds to a dozen hours. We assess the efficiency of the variogram analysis, for both detecting short timescale variability and estimating the underlying characteristic timescales from Gaia photometry, through extensive light-curve simulations for various periodic and transient short timescale variable types. We show that, with this approach, we can detect fast periodic variabil- ity, with amplitudes down to a few millimagnitudes, as well as some M dwarf flares and supernovae explosions, with limited contamination from longer timescale variables or constant sources. Timescale estimates from the variogram give valuable informa- tion on the rapidity of the underlying variation, which could complement timescale estimates from other methods, like Fourier-based periodograms, and be reinvested in preparation of ground-based photometric follow-up of short timescale candidates evi- denced by Gaia. The next step will be to find new short timescale variable candidates from real Gaia data, and to further characterize them using all the Gaia information, including color and spectrum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا