Do you want to publish a course? Click here

Anomalous Nonlocal Resistance and Spin-charge Conversion Mechanisms in Two-Dimensional Metals

92   0   0.0 ( 0 )
 Added by Chunli Huang
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We uncover two anomalous features in the nonlocal transport behavior of two-dimensional metallic materials with spin-orbit coupling. Firstly, the nonlocal resistance can have negative values and oscillate with distance, even in the absence of a magnetic field. Secondly, the oscillations of the nonlocal resistance under an applied in-plane magnetic field (Hanle effect) can be asymmetric under field reversal. Both features are produced by direct magnetoelectric coupling, which is possible in materials with broken inversion symmetry but was not included in previous spin diffusion theories of nonlocal transport. These effects can be used to identify the relative contributions of different spin-charge conversion mechanisms. They should be observable in adatom-functionalized graphene, and may provide the reason for discrepancies in recent nonlocal transport experiments on graphene.



rate research

Read More

Spin injection is a powerful experimental probe into a wealth of nonequilibrium spin-dependent phenomena displayed by materials with spin-orbit coupling (SOC). Here, we develop a theory of coupled spin-charge diffusive transport in two-dimensional spin-valve devices. The theory describes a realistic proximity-induced SOC with both spatially uniform and random components of the SOC due to adatoms and imperfections, and applies to the two dimensional electron gases found in two-dimensional materials and van der Walls heterostructures. The various charge-to-spin conversion mechanisms known to be present in diffusive metals, including the spin Hall effect and several mechanisms contributing current-induced spin polarization are accounted for. Our analysis shows that the dominant conversion mechanisms can be discerned by analyzing the nonlocal resistance of the spin-valve for different polarizations of the injected spins and as a function of the applied in-plane magnetic field.
Diverse processes rely on the viscous flow of polymer solutions through porous media. In many cases, the macroscopic flow resistance abruptly increases above a threshold flow rate in a porous medium---but not in bulk solution. The reason why has been a puzzle for over half a century. Here, by directly visualizing the flow in a transparent 3D porous medium, we demonstrate that this anomalous increase is due to the onset of an elastic instability. We establish that the energy dissipated by the unstable flow fluctuations, which vary across pores, generates the anomalous increase in flow resistance through the entire medium. Thus, by linking the pore-scale onset of unstable flow to macroscopic transport, our work provides generally-applicable guidelines for predicting and controlling polymer solution flows.
The study of randomness in low-dimensional quantum antiferromagnets is at the forefront of research in the field of strongly correlated electron systems, yet there have been relatively few experimental model systems. Complementary neutron scattering and numerical experiments demonstrate that the spin-diluted Heisenberg antiferromagnet La2Cu(1-z)(Zn,Mg)zO4 is an excellent model material for square-lattice site percolation in the extreme quantum limit of spin one-half. Measurements of the ordered moment and spin correlations provide important quantitative information for tests of theories for this complex quantum-impurity problem.
Reports of metallic behavior in two-dimensional (2D) systems such as high mobility metal-oxide field effect transistors, insulating oxide interfaces, graphene, and MoS2 have challenged the well-known prediction of Abrahams, et al. that all 2D systems must be insulating. The existence of a metallic state for such a wide range of 2D systems thus reveals a wide gap in our understanding of 2D transport that has become more important as research in 2D systems expands. A key to understanding the 2D metallic state is the metal-insulator transition (MIT). In this report, we demonstrate the existence of a disorder induced MIT in functionalized graphene, a model 2D system. Magneto-transport measurements show that weak-localization overwhelmingly drives the transition, in contradiction to theoretical assumptions that enhanced electron-electron interactions dominate. These results provide the first detailed picture of the nature of the transition from the metallic to insulating states of a 2D system.
We use microscopic linear response theory to derive a set of equations that provide a complete description of coupled spin and charge diffusive transport in a two-dimensional electron gas (2DEG) with the Rashba spin-orbit (SO) interaction. These equations capture a number of interrelated effects including spin accumulation and diffusion, Dyakonov-Perel spin relaxation, magnetoelectric, and spin-galvanic effects. They can be used under very general circumstances to model transport experiments in 2DEG systems that involve either electrical or optical spin injection. We comment on the relationship between these equations and the exact spin and charge density operator equations of motion. As an example of the application of our equations, we consider a simple electrical spin injection experiment and show that a voltage will develop between two ferromagnetic contacts if a spin-polarized current is injected into a 2DEG, that depends on the relative magnetization orientation of the contacts. This voltage is present even when the separation between the contacts is larger than the spin diffusion length.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا