Do you want to publish a course? Click here

Wonderful compactifications of Bruhat-Tits buildings

123   0   0.0 ( 0 )
 Added by Bertrand Remy
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Given a split semisimple group over a local field, we consider the maximal Satake-Berkovich compactification of the corresponding Euclidean building. We prove that it can be equivariantly identified with the compactification which we get by embedding the building in the Berkovich analytic space associated to the wonderful compactification of the group. The construction of this embedding map is achieved over a general non-archimedean complete ground field. The relationship between the structures at infinity, one coming from strata of the wonderful compactification and the other from Bruhat-Tits buildings, is also investigated.



rate research

Read More

154 - Shai Evra 2015
In cite{FGLNP}, Fox, Gromov, Lafforgue, Naor and Pach, in a respond to a question of Gromov cite{G}, constructed bounded degree geometric expanders, namely, simplical complexes having the affine overlapping property. Their explicit constructions are finite quotients of $tilde{A_d}$-buildings, for $dgeq 2$, over local fields. In this paper, this result is extended to general high rank Bruhat-Tits buildings.
Given a semisimple group over a complete non-Archimedean field, it is well known that techniques from non-Archimedean analytic geometry provide an embedding of the corresponding Bruhat-Tits builidng into the analytic space associated to the group; by composing the embedding with maps to suitable analytic proper spaces, this eventually leads to various compactifications of the building. In the present paper, we give an intrinsic characterization of this embedding.
Let K be a function field with constant field k and let infinity be a fixed place of K. Let C be the Dedekind domain consisting of all those elements of K which are integral outside infinity. The group G=GL_2(C) is important for a number of reasons. For example, when k is finite, it plays a central role in the theory of Drinfeld modular curves. Many properties follow from the action of G on its associated Bruhat-Tits tree, T. Classical Bass-Serre theory shows how a presentation for G can be derived from the structure of the quotient graph (or fundamental domain) GT. The shape of this quotient graph (for any G) is described in a fundamental result of Serre. However there are very few known examples for which a detailed description of GT is known. (One such is the rational case, C=k[t], i.e. when K has genus zero and infinity has degree one.) In this paper we give a precise description of GT for the case where the genus of K is zero, K has no places of degree one and infinity has degree two. Among the known examples a new feature here is the appearance of vertex stabilizer subgroups (of G) which are of quaternionic type.
We apply the theory of fundamental strata of Bremer and Sage to find cohomologically rigid $G$-connections on the projective line, generalising the work of Frenkel and Gross. In this theory, one studies the leading term of a formal connection with respect to the Moy-Prasad filtration associated to a point in the Bruhat-Tits building. If the leading term is regular semisimple with centraliser a (not necessarily split) maximal torus $S$, then we have an $S$-toral connection. In this language, the irregular singularity of the Frenkel-Gross connection gives rise to the homogenous toral connection of minimal slope associated to the Coxeter torus $mathcal{C}$. In the present paper, we consider connections on $mathbb{G}_m$ which have an irregular homogeneous $mathcal{C}$-toral singularity at zero of slope $i/h$, where $h$ is the Coxeter number and $i$ is a positive integer coprime to $h$, and a regular singularity at infinity with unipotent monodromy. Our main result is the characterisation of all such connections which are rigid.
Let $k$ be a field, let $G$ be a reductive $k$-group and $V$ an affine $k$-variety on which $G$ acts. In this note we continue our study of the notion of cocharacter-closed $G(k)$-orbits in $V$. In earlier work we used a rationality condition on the point stabilizer of a $G$-orbit to prove Galois ascent/descent and Levi ascent/descent results concerning cocharacter-closure for the corresponding $G(k)$-orbit in $V$. In the present paper we employ building-theoretic techniques to derive analogous results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا