No Arabic abstract
By use of ultrasound studies we resolved magneto-acoustic quantum oscillation deep into the mixed state of the multiband nonmagnetic superconductor YNi2B2C. Below the upper critical field, only a very weak additional damping appears that can be well explained by the field inhomogeneity caused by the flux-line lattice in the mixed state. This is clear evidence for no or a vanishingly small gap for one of the bands, namely, the spheroidal alpha band. This contrasts de Haas--van Alphen data obtained by use of torque magnetometry for the same sample, with a rapidly vanishing oscillation signal in the mixed state. This points to a strongly distorted flux-line lattice in the latter case that, in general, can hamper a reliable extraction of gap parameters by use of such techniques.
In this study, we report on the observation of de Haas-van Alphen-type quantum oscillations (QO) in the ultrasound velocity of NbP as well as `giant QO in the ultrasound attenuation in pulsed magnetic fields. The difference of the QO amplitude for different acoustic modes reveals a strong anisotropy of the effective deformation potential, which we estimate to be as high as $9,mathrm{eV}$ for certain parts of the Fermi surface. Furthermore, the natural filtering of QO frequencies and the tracing of the individual Landau levels to the quantum limit allows for a more detailed investigation of the Fermi surface of NbP as was previously achieved by means of analyzing QO observed in magnetization or electrical resistivity.
Charge doping of iron-pnictide superconductors leads to collective pinning of flux vortices, whereas isovalent doping does not. Moreover, flux pinning in the charge-doped compounds is consistently described by the mean-free path fluctuations introduced by the dopant atoms, allowing for the extraction of the elastic quasiparticle scattering rate. The absence of scattering by dopant atoms in isovalently doped BaFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$ is consistent with the observation of a linear temperature dependence of the low-temperature penetration depth in this material.
We study the spatial distribution of the density of states (DOS) at zero bias N(r) in the mixed state of single and multigap superconductors. We provide an analytic expression for N(r) based on deGennes relation between DOS and the order parameter that reproduces well Scanning Tunneling Microscopy (STM) data in several superconducting materials. In the single gap superconductor $beta$-Bi$_2$Pd, we find that N(r) is governed by a length scale $xi_H=sqrt{phi_0/2pi H}$, which decreases in rising fields. The vortex core size $cal C$, defined via the slope of the order parameter at the vortex center, $cal C$ $propto (d Delta /dr |_{r to 0})^{-1}$, differs from $xi_H$ by a material dependent numerical factor. For two gap superconductors 2H-NbSe$_{1.8}$S$_{0.2}$ and 2H-NbS$_2$, we find that $cal C$ is field independent and has the same value for both bands. We conclude that, independently of the magnetic field induced variation of the order parameter values in both bands, the spatial variation of the order parameter close to the vortex core is the same for all bands.
Rabi oscillations have been observed in many superconducting devices, and represent prototypical logic operations for quantum bits (qubits) in a quantum computer. We use a three-level multiphoton analysis to understand the behavior of the superconducting phase qubit (current-biased Josephson junction) at high microwave drive power. Analytical and numerical results for the ac Stark shift, single-photon Rabi frequency, and two-photon Rabi frequency are compared to measurements made on a dc SQUID phase qubit with Nb/AlOx/Nb tunnel junctions. Good agreement is found between theory and experiment.
In the vortex core of slightly overdoped Bi2Sr2CaCu2Ox, the electron-like and hole-like states have been found to exhibit spatial modulations in anti-phase with each other along the Cu-O bonding direction. Some kind of one-dimensionality has been observed in the vortex core, and it is more clearly seen in differential conductance maps at lower biases below +-9 mV.