No Arabic abstract
Revelation of chlorine and bromine isotope fractionation of halogenated organic compounds (HOCs) in electron ionization mass spectrometry (EI-MS) is crucial for compound-specific chlorine/bromine isotope analysis (CSIA-Cl/Br) using gas chromatography EI-MS (GC-EI-MS). This study systematically investigated chlorine/bromine isotope fractionation in EI-MS of HOCs including 12 organochlorines and 5 organobromines using GC-double focus magnetic-sector high resolution MS (GC-DFS-HRMS). Chlorine/bromine isotope fractionation behaviors of the HOCs in EI-MS showed varied isotope fractionation patterns and extents depending on compounds. Besides, isotope fractionation patterns and extents varied at different EI energies, demonstrating potential impacts of EI energy on the chlorine/bromine isotope fractionation. Hypotheses of inter-ion and intra-ion isotope fractionations were applied to interpreting the isotope fractionation behaviors. The inter-ion and intra-ion isotope fractionations counteractively contributed to the apparent isotope ratio for a certain dehalogenated product ion. The isotope fractionation mechanisms were tentatively elucidated on basis of the quasi-equilibrium theory. In the light of the findings of this study, isotope ratio evaluation scheme using complete molecular ions and the EI source with sufficient stable EI energies may be helpful to achieve optimal precision and accuracy of CSIA-Cl/Br data. The method and results of this study can help to predict isotope fractionation of HOCs during dehalogenation processes and further to reveal the dehalogenation pathways.
When confronted with a substance of unknown identity, researchers often perform mass spectrometry on the sample and compare the observed spectrum to a library of previously-collected spectra to identify the molecule. While popular, this approach will fail to identify molecules that are not in the existing library. In response, we propose to improve the librarys coverage by augmenting it with synthetic spectra that are predicted using machine learning. We contribute a lightweight neural network model that quickly predicts mass spectra for small molecules. Achieving high accuracy predictions requires a novel neural network architecture that is designed to capture typical fragmentation patterns from electron ionization. We analyze the effects of our modeling innovations on library matching performance and compare our models to prior machine learning-based work on spectrum prediction.
At room temperature, the quantum contribution to the kinetic energy of a water molecule exceeds the classical contribution by an order of magnitude. The quantum kinetic energy (QKE) of a water molecule is modulated by its local chemical environment and leads to uneven partitioning of isotopes between different phases in thermal equilibrium, which would not occur if the nuclei behaved classically. In this work, we use ab initio path integral simulations to show that QKEs of the water molecules and the equilibrium isotope fractionation ratios of the oxygen and hydrogen isotopes are sensitive probes of the hydrogen bonding structures in aqueous ionic solutions. In particular, we demonstrate how the QKE of water molecules in path integral simulations can be decomposed into translational, rotational and vibrational degrees of freedom, and use them to determine the impact of solvation on different molecular motions. By analyzing the QKEs and isotope fractionation ratios, we show how the addition of the Na$^+$, Cl$^-$ and HPO$_4^{2-}$ ions perturbs the competition between quantum effects in liquid water and impacts their local solvation structures.
Fractionation of isotopes among distinct molecules or phases is a quantum effect which is often exploited to obtain insights on reaction mechanisms, biochemical, geochemical and atmospheric phenomena. Accurate evaluation of isotope ratios in atomistic simulations is challenging, because one needs to perform a thermodynamic integration with respect to the isotope mass, along with time-consuming path integral calculations. By re-formulating the problem as a particle exchange in the ring polymer partition function, we derive new estimators giving direct access to the differential partitioning of isotopes, which can simplify the calculations by avoiding thermodynamic integration. We demonstrate the efficiency of these estimators by applying them to investigate the isotope fractionation ratios in the gas-phase Zundel cation, and in a few simple hydrocarbons.
Native electrospray ionization/ion mobility-mass spectrometry (ESI/IM-MS) allows an accurate determination of low-resolution structural features of proteins. Yet, the presence of proton dynamics, observed already by us for DNA in the gas phase, and its impact on protein structural determinants, have not been investigated so far. Here, we address this issue by a multi-step simulation strategy on a pharmacologically relevant peptide, the N-terminal residues of amyloid-beta peptide (Abeta(1-16)). Our calculations reproduce the experimental maximum charge state from ESI-MS and are also in fair agreement with collision cross section (CCS) data measured here by ESI/IM-MS. Although the main structural features are preserved, subtle conformational changes do take place in the first ~0.1 ms of dynamics. In addition, intramolecular proton dynamics processes occur on the ps-timescale in the gas phase as emerging from quantum mechanics/molecular mechanics (QM/MM) simulations at the B3LYP level of theory. We conclude that proton transfer phenomena do occur frequently during fly time in ESI-MS experiments (typically on the ms timescale). However, the structural changes associated with the process do not significantly affect the structural determinants.
We investigate the gas-phase and grain-surface chemistry in the inner 30 AU of a typical protoplanetary disk using a new model which calculates the gas temperature by solving the gas heating and cooling balance and which has an improved treatment of the UV radiation field. We discuss inner-disk chemistry in general, obtaining excellent agreement with recent observations which have probed the material in the inner regions of protoplanetary disks. We also apply our model to study the isotopic fractionation of carbon. Results show that the fractionation ratio, 12C/13C, of the system varies with radius and height in the disk. Different behaviour is seen in the fractionation of different species. We compare our results with 12C/13C ratios in the Solar System comets, and find a stark contrast, indicative of reprocessing.