No Arabic abstract
Shear responsive surfaces offer potential advances in a number of applications. Surface functionalisation using polymer brushes is one route to such properties, particularly in the case of entangled polymers. We report on neutron reflectometry measurements of polymer brushes in entangled polymer solutions performed under controlled shear, as well as coarse-grained computer simulations corresponding to these interfaces. Here we show a reversible and reproducible collapse of the brushes, increasing with the shear rate. Using two brushes of greatly different chain lengths and grafting densities, we demonstrate that the dynamics responsible for the structural change of the brush are governed by the free chains in solution rather than the brush itself, within the range of parameters examined. The phenomenon of the brush collapse could find applications in the tailoring of nanosensors, and as a way to dynamically control surface friction and adhesion.
The effect of excluded volume interactions on the structure of a polymer in shear flow is investigated by Brownian Dynamics simulations for chains with size $30leq Nleq 300$. The main results concern the structure factor $S({bf q})$ of chains of N=300 Kuhn segments, observed at a reduced shear rate $beta=dot{gamma}tau=3.2$, where $dot{gamma}$ is the bare shear rate and $tau$ is the longest relaxation time of the chain. At low q, where anisotropic global deformation is probed, the chain form factor is shown to match the form factor of the continuous Rouse model under shear at the same reduced shear rate, computed here for the first time in a wide range of wave vectors. At high q, the chain structure factor evolves towards the isotropic equilibrium power law $q^{-1/ u}$ typical of self-avoiding walk statistics. The matching between excluded volume and ideal chains at small q, and the excluded volume power law behavior at large q are observed for ${bf q}$ orthogonal to the main elongation axis but not yet for ${bf q}$ along the elongation direction itself, as a result of interferences with finite extensibility effects. Our simulations support the existence of anisotropic shear blobs for polymers in good solvent under shear flow for $beta>1$ provided chains are sufficiently long.
The tumbling dynamics of individual polymers in semidilute solution is studied by large-scale non-equilibrium mesoscale hydrodynamic simulations. We find that the tumbling time is equal to the non-equilibrium relaxation time of the polymer end-to-end distance along the flow direction and strongly depends on concentration. In addition, the normalized tumbling frequency as well as the widths of the alignment distribution functions for a given concentration-dependent Weissenberg number exhibit a weak concentration dependence in the cross-over regime from a dilute to a semidilute solution. For semidilute solutions a universal behavior is obtained. This is a consequence of screening of hydrodynamic interactions at polymer concentrations exceeding the overlap concentration.
The absorption of free linear chains in a polymer brush was studied with respect to chain size $L$ and compatibility $chi$ with the brush by means of Monte Carlo (MC) simulations and Density Functional Theory (DFT) / Self-Consistent Field Theory (SCFT) at both moderate, $sigma_g = 0.25$, and high, $sigma_g = 1.00$, grafting densities using a bead-spring model. Different concentrations of the free chains $0.0625 le phi_o le 0.375$ are examined. Contrary to the case of $chi = 0$ when all species are almost completely ejected by the polymer brush irrespective of their length $L$, for $chi < 0$ we find that the degree of absorption (absorbed amount) $Gamma(L)$ undergoes a sharp crossover from weak to strong ($approx 100%$) absorption, discriminating between oligomers, $1le Lle 8$, and longer chains. For a moderately dense brush, $sigma_g = 0.25$, the longer species, $L > 8$, populate predominantly the deep inner part of the brush whereas in a dense brush $sigma_g = 1.00$ they penetrate into the fluffy tail of the dense brush only. Gyration radius $R_g$ and end-to-end distance $R_e$ of absorbed chains thereby scale with length $L$ as free polymers in the bulk. Using both MC and DFT/SCFT methods for brushes of different chain length $32 le N le 256$, we demonstrate the existence of unique {em critical} value of compatibility $chi = chi^{c}<0$. For $chi^{c}(phi_o)$ the energy of free chains attains the {em same} value, irrespective of length $L$ whereas the entropy of free chain displays a pronounced minimum. At $chi^{c}$ all density profiles of absorbing chains with different $L$ intersect at the same distance from the grafting plane. The penetration/expulsion kinetics of free chains into the polymer brush after an instantaneous change in their compatibility $chi$ displays a rather rich behavior. We find three distinct regimes of penetration kinetics of free chains regarding the length $L$: I ($1le Lle 8$), II ($8 le L le N$), and III ($L > N$), in which the time of absorption $tau$ grows with $L$ at a different rate. During the initial stages of penetration into the brush one observes a power-law increase of $Gamma propto t^alpha$ with power $alpha propto -ln phi_o$ whereby penetration of the free chains into the brush gets {em slower} as their concentration rises.
Molecular Dynamics (MD) simulations are presented for a coarse-grained bead-spring model of ring polymer brushes under compression. Flexible polymer brushes are always disordered during compression, whereas semiflexible brushes tend to be ordered under sufficiently strong compression. Besides, the polymer monomer density of semiflexible polymer brush is very high near the polymer brush surface, inducing a peak value of free energy near the polymer brush surface. Therefore, by compressing nanoparticles (NPs) in semiflexible ring brush system, NPs tend to exhibit a closely packed single layer structure between the brush surface and the impenetrable wall, which provide a new access of designing responsive applications.
The objective of this work is to study the role of shear on the rupture of ultrathin polymer films. To do so, a finite-difference numerical scheme for the resolution of the thin film equation was set up taking into account capillary and van der Waals (vdW) forces. This method was validated by comparing the dynamics obtained from an initial harmonic perturbation to established theoretical predictions. With the addition of shear, three regimes have then been evidenced as a function of the shear rate. In the case of low shear rates the rupture is delayed when compared to the no-shear problem, while at higher shear rates it is even suppressed: the perturbed interface goes back to its unperturbed state over time. In between these two limiting regimes, a transient one in which shear and vdW forces balance each other, leading to a non-monotonic temporal evolution of the perturbed interface, has been identified. While a linear analysis is sufficient to describe the rupture time in the absence of shear, the nonlinearities appear to be essential otherwise.