Do you want to publish a course? Click here

High Photocurrent in Gated Graphene-Silicon Hybrid Photodiodes

109   0   0.0 ( 0 )
 Added by Max C. Lemme
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Graphene/silicon (G/Si) heterojunction based devices have been demonstrated as high responsivity photodetectors that are potentially compatible with semiconductor technology. Such G/Si Schottky junction diodes are typically in parallel with gated G/silicon dioxide (SiO$_2$)/Si areas, where the graphene is contacted. Here, we utilize scanning photocurrent measurements to investigate the spatial distribution and explain the physical origin of photocurrent generation in these devices. We observe distinctly higher photocurrents underneath the isolating region of graphene on SiO$_2$ adjacent to the Schottky junction of G/Si. A certain threshold voltage (V$_T$) is required before this can be observed, and its origins are similar to that of the threshold voltage in metal oxide semiconductor field effect transistors. A physical model serves to explain the large photocurrents underneath SiO$_2$ by the formation of an inversion layer in Si. Our findings contribute to a basic understanding of graphene / semiconductor hybrid devices which, in turn, can help in designing efficient optoelectronic devices and systems based on such 2D/3D heterojunctions.



rate research

Read More

Graphene / silicon (G/Si) heterostructures have been studied extensively in the past years for applications such as photodiodes, photodetectors and solar cells, with a growing focus on efficiency and performance. Here, a specific contact pattern scheme with interdigitated Schottky and graphene/insulator/silicon (GIS) structures is explored to experimentally demonstrate highly sensitive G/Si photodiodes. With the proposed design, an external quantum efficiency (EQE) of > 80 % is achieved for wavelengths ranging from 380 to 930 nm. A maximum EQE of 98% is observed at 850 nm, where the responsivity peaks to 635 mA/W, surpassing conventional Si p-n photodiodes. This efficiency is attributed to the highly effective collection of charge carriers photogenerated in Si under the GIS parts of the diodes. The experimental data is supported by numerical simulations of the diodes. Based on these results, a definition for the true active area in G/Si photodiodes is proposed, which may serve towards standardization of G/Si based optoelectronic devices.
Although van der Waals layered transition metal dichalcogenides from transient absorption spectroscopy have successfully demonstrated an ideal carrier multiplication (CM) performance with an onset of nearly 2Eg,interpretation of the CM effect from the optical approach remains unresolved owing to the complexity of many-body electron-hole pairs. We demonstrate the CM effect through simple photocurrent measurements by fabricating the dual-gate P-N junction of a MoTe2 film on a transparent substrate. Electrons and holes were efficiently extracted by eliminating the Schottky barriers in the metal contact and minimizing multiple reflections. The photocurrent was elevated proportionately to the excitation energy. The boosted quantum efficiency confirms the multiple electron-hole pair generation of >2Eg, consistent with CM results from an optical approach, pushing the solar cell efficiency beyond the Shockley-Queisser limit.
We report on the observation of the magnetic quantum ratchet effect in graphene with a lateral dual-grating top gate (DGG) superlattice. We show that the THz ratchet current exhibits sign-alternating magneto-oscillations due to the Shubnikov-de Haas effect. The amplitude of these oscillations is greatly enhanced as compared to the ratchet effect at zero magnetic field. The direction of the current is determined by the lateral asymmetry which can be controlled by variation of gate potentials in DGG. We also study the dependence of the ratchet current on the orientation of the terahertz electric field (for linear polarization) and on the radiation helicity (for circular polarization). Notably, in the latter case, switching from right- to left-circularly polarized radiation results in an inversion of the photocurrent direction. We demonstrate that most of our observations can be well fitted by the drift-diffusion approximation based on the Boltzmann kinetic equation with the Landau quantization fully encoded in the oscillations of the density of states.
It is commonly assumed that photocurrent in two-dimensional systems with centrosymmetric lattice is generated at structural inhomogenities, such as p-n junctions. Here, we study an alternative mechanism of photocurrent generation associated with inhomogenity of the driving electromagnetic field, termed as plasmonic drag. It is associated with direct momentum transfer from field to conduction electrons, and can be characterized by a non-local non-linear conductivity $sigma^{(2)}({bf q},omega)$. By constructing a classical kinetic model of non-linear conductivity with full account of non-locality, we show that it is resonantly enhanced for wave phase velocity coinciding with electron Fermi velocity. The enhancement is interpreted as phase locking between electrons and the wave. We discuss a possible experiment where non-uniform field is created by a propagating graphene plasmon, and find an upper limit of the current responsivity vs plasmon velocity. This limit is set by a competition between resonantly growing $sigma^{(2)}({bf q},omega)$ and diverging kinetic energy of electrons as the wave velocity approaches Fermi velocity.
We discuss transport through double gated single and few layer graphene devices. This kind of device configuration has been used to investigate the modulation of the energy band structure through the application of an external perpendicular electric field, a unique property of few layer graphene systems. Here we discuss technological details that are important for the fabrication of top gated structures, based on electron-gun evaporation of SiO$_2$. We perform a statistical study that demonstrates how --contrary to expectations-- the breakdown field of electron-gun evaporated thin SiO$_2$ films is comparable to that of thermally grown oxide layers. We find that a high breakdown field can be achieved in evaporated SiO$_2$ only if the oxide deposition is directly followed by the metallization of the top electrodes, without exposure to air of the SiO$_2$ layer.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا