Do you want to publish a course? Click here

Revisiting Diffusion: Self-similar Solutions and the $t^{-1/2}$ Decay in Initial and Initial-Boundary Value Problems

139   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The diffusion equation is a universal and standard textbook model for partial differential equations (PDEs). In this work, we revisit its solutions, seeking, in particular, self-similar profiles. This problem connects to the classical theory of special functions and, more specifically, to the Hermite as well as the Kummer hypergeometric functions. Reconstructing the solution of the original diffusion model from novel self-similar solutions of the associated self-similar PDE, we infer that the $t^{-1/2}$ decay law of the diffusion amplitude is {it not necessary}. In particular, it is possible to engineer setups of {it both} the Cauchy problem and the initial-boundary value problem in which the solution decays at a {it different rate}. Nevertheless, we observe that the $t^{-1/2}$ rate corresponds to the dominant decay mode among integrable initial data, i.e., ones corresponding to finite mass. Hence, unless the projection to such a mode is eliminated, generically this decay will be the slowest one observed. In initial-boundary value problems, an additional issue that arises is whether the boundary data are textit{consonant} with the initial data; namely, whether the boundary data agree at all times with the solution of the Cauchy problem associated with the same initial data, when this solution is evaluated at the boundary of the domain. In that case, the power law dictated by the solution of the Cauchy problem will be selected. On the other hand, in the non-consonant cases a decomposition of the problem into a self-similar and a non-self-similar one is seen to be beneficial in obtaining a systematic understanding of the resulting solution.



rate research

Read More

We study the well-posedness for initial boundary value problems associated with time fractional diffusion equations with non-homogenous boundary and initial values. We consider both weak and strong solutions for the problems. For weak solutions, we introduce a new definition of solutions which allows to prove the existence of solution to the initial boundary value problems with non-zero initial and boundary values and non-homogeneous terms lying in some arbitrary negative-order Sobolev spaces. For strong solutions, we introduce an optimal compatibility condition and prove the existence of the solutions. We introduce also some sharp conditions guaranteeing the existence of solutions with more regularity in time and space.
A reaction-diffusion equation with power nonlinearity formulated either on the half-line or on the finite interval with nonzero boundary conditions is shown to be locally well-posed in the sense of Hadamard for data in Sobolev spaces. The result is established via a contraction mapping argument, taking advantage of a novel approach that utilizes the formula produced by the unified transform method of Fokas for the forced linear heat equation to obtain linear estimates analogous to those previously derived for the nonlinear Schrodinger, Korteweg-de Vries and good Boussinesq equations. Thus, the present work extends the recently introduced unified transform method approach to well-posedness from dispersive equations to diffusive ones.
We consider the nonlinear heat equation $u_t - Delta u = |u|^alpha u$ on ${mathbb R}^N$, where $alpha >0$ and $Nge 1$. We prove that in the range $0 < alpha <frac {4} {N-2}$, for every $mu >0$, there exist infinitely many sign-changing, self-similar solutions to the Cauchy problem with initial value $u_0 (x)= mu |x|^{-frac {2} {alpha }}$. The construction is based on the analysis of the related inverted profile equation. In particular, we construct (sign-changing) self-similar solutions for positive initial values for which it is known that there does not exist any local, nonnegative solution.
216 - Anxo Biasi 2021
This paper addresses the construction and the stability of self-similar solutions to the isentropic compressible Euler equations. These solutions model a gas that implodes isotropically, ending in a singularity formation in finite time. The existence of smooth solutions that vanish at infinity and do not have vacuum regions was recently proved and, in this paper, we provide the first construction of such smooth profiles, the first characterization of their spectrum of radial perturbations as well as some endpoints of unstable directions. Numerical simulations of the Euler equations provide evidence that one of these endpoints is a shock formation that happens before the singularity at the origin, showing that the implosion process is unstable.
We examine initial-boundary value problems for diffusion equations with distributed order time-fractional derivatives. We prove existence and uniqueness results for the weak solution to these systems, together with its continuous dependency on initial value and source term. Moreover, under suitable assumption on the source term, we establish that the solution is analytic in time.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا