The role of anisotropic components on the dark energy and the dynamics of the universe is investigated. An anisotropic dark energy fluid with different pressures along different spatial directions is assumed to incorporate the effect of anisotropy. One dimensional cosmic strings aligned along x-direction supplement some kind of anisotropy. Anisotropy in the dark energy pressure is found to evolve with cosmic expansion at least at late times. At an early phase, the anisotropic effect due to the cosmic strings substantially affect the dynamics of the accelerating universe.
Stability, dark energy (DE) parameterization and swampland aspects for the Bianchi form-$VI_{h}$ universe have been formulated in an extended gravity hypothesis. Here we have assumed a minimally coupled geometry field with a rescaled function of $f(R, T)$ replaced in the geometric action by the Ricci scalar $R$. Exact solutions are sought under certain basic conditions for the related field equations. For the following theoretically valid premises, the field equations in this scalar-tensor theory have been solved. It is observed under appropriate conditions that our model shows a decelerating to accelerating phase transition property. Results are observed to be coherent with recent observations. Here, our models predict that the universes rate of expansion will increase with the passage of time. The physical and geometric aspects of the models are discussed in detail. In this model, we also analyze the parameterizations of dark energy by fitting the EoS parameter $omega(z)$ with redshift. The results obtained would be useful in clarifying the relationship between dark energy parameters. In this, we also explore the correspondence of swampland dark energy. The swampland criteria have also been shown the nature of the scalar field and the potential of the scalar field.
In this paper, we have constructed dark energy models in an anisotropic Bianchi-V space-time and studied the role of anisotropy in the evolution of dark energy. We have considered anisotropic dark energy fluid with different pressure gradients along different spatial directions. In order to obtain a deterministic solution, we have considered three general forms of scale factor. The different forms of scale factors considered here produce time varying deceleration parameters in all the cases that simulates the cosmic transition. The variable equation of state (EoS) parameter, skewness parameters for all the models are obtained and analyzed. The physical properties of the models are also discussed.
The current research investigates the behavior of the Tsallis holographic dark energy (THDE) model with quintessence in a homogeneous and anisotropic Bianchi type-III (B-III) space-time. We construct the model by using two conditions (i) expansion scalar ($theta$) is proportionate to shear scalar ($sigma$) in the model and (ii) hybrid expansion law $a = t^beta e^{gamma t}$, where $beta>0$, $gamma>0$. Our study is based on Type Ia supernovae (SNIa) data in combination with CMB and BAO observations (Giostri et al, JCAP 3, 27 (2012), arXiv:1203.3213v2[astro-ph.CO]), the present values of Hubble constant and deceleration parameter are $H_{0} = 73.8$ and $q_{0} = -0.54$ respectively. Compiling our theoretical models with this data, we obtain $beta = 2.1445~ & ~ 2.1154$ for $gamma = 0.5 ~ & ~ 1$ respectively. We have completed a new type of cosmic model for which the expansion occurs to the current accelerated phase for the restraints. We have discussed the conformity among the scalar field model of quintessence and THDE model. To understand the Universe, we have also established the relations for Distance modulus, Luminosity Distance, and Angular-diameter distance. Some geometric and physical aspects of the THDE model are also highlighted.
Anisotropic dark energy model with dynamic pressure anisotropies along different spatial directions is constructed at the backdrop of a spatially homogeneous diagonal Bianchi type $V$ $(BV)$ space-time in the framework of General Relativity. A time varying deceleration parameter generating a hybrid scale factor is considered to simulate a cosmic transition from early deceleration to late time acceleration. We found that the pressure anisotropies along the $y-$ and $z-$ axes evolve dynamically and continue along with the cosmic expansion without being subsided even at late times. The anisotropic pressure along the $x-$axis becomes equal to the mean fluid pressure. At a late phase of cosmic evolution, the model enters into a phantom region. From a state finder diagnosis, it is found that the model overlaps with $Lambda$CDM at late phase of cosmic time.
A spatially homogeneous and locally rotationally symmetric Bianchi type-II cosmological model under the influence of both shear and bulk viscosity has been studied. Exact solutions are obtained with a barotropic equation of state between thermodynamics pressure and the energy density of the fluid, and considering the linear relationships amongst the energy density, the expansion scalar and the shear scalar. Special cases with vanishing bulk viscosity coefficients and with the perfect fluid in the absence of viscosity have also been studied. The formal appearance of the solutions is the same for both the viscous as well as the perfect fluids. The difference is only in choosing a constant parameter which appears in the solutions. In the cases of either a fluid with bulk viscosity alone or a perfect fluid, the barotropic equation of state is no longer an additional assumption to be imposed; rather it follows directly from the field equations.