Do you want to publish a course? Click here

Towards a unified view of inhomogeneous stellar winds in isolated supergiant stars and supergiant high mass X-ray binaries

67   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Massive stars, at least $sim$ 10 times more massive than the Sun, have two key properties that make them the main drivers of evolution of star clusters, galaxies, and the Universe as a whole. On the one hand, the outer layers of massive stars are so hot that they produce most of the ionizing ultraviolet radiation of galaxies; in fact, the first massive stars helped to re-ionize the Universe after its Dark Ages. Another important property of massive stars are the strong stellar winds and outflows they produce. This mass loss, and finally the explosion of a massive star as a supernova or a gamma-ray burst, provide a significant input of mechanical and radiative energy into the interstellar space. These two properties together make massive stars one of the most important cosmic engines: they trigger the star formation and enrich the interstellar medium with heavy elements, that ultimately leads to formation of Earth-like rocky planets and the development of complex life. The study of massive star winds is thus a truly multidisciplinary field and has a wide impact on different areas of astronomy. [...] This detailed review summarises the current knowledge on the theory and observations of winds from massive stars, as well as on observations and accretion processes in wind-fed high mass X-ray binaries. The aim is to combine in the near future all available theoretical diagnostics and observational measurements to achieve a unified picture of massive star winds in isolated objects and in binary systems.



rate research

Read More

160 - L. Ducci 2009
We have developed a stellar wind model for OB supergiants to investigate the effects of accretion from a clumpy wind on the luminosity and variability properties of High Mass X-ray Binaries. Assuming that the clumps are confined by ram pressure of the ambient gas and exploring different distributions for their mass and radii, we computed the expected X-ray light curves in the framework of the Bondi-Hoyle accretion theory, modified to take into account the presence of clumps. The resulting variability properties are found to depend not only on the assumed orbital parameters but also on the wind characteristics. We have then applied this model to reproduce the X-ray light curves of three representative High Mass X-ray Binaries: two persistent supergiant systems (VelaX-1 and 4U1700-377) and the Supergiant Fast X-ray Transient IGRJ11215-5952. The model can reproduce well the observed light curves, but requiring in all cases an overall mass loss from the supergiant about a factor 3-10 smaller than the values inferred from UV lines studies that assume a homogeneous wind.
We present preliminary results on Herschel/PACS mid/far-infrared photometric observations of INTEGRAL supergiant High Mass X-ray Binaries (HMXBs), with the aim of detecting the presence and characterizing the nature of absorbing material (dust and/or cold gas), either enshrouding the whole binary systems, or surrounding the sources within their close environment. These unique observations allow us to better characterize the nature of these HMXBs, to constrain the link with their environment (impact and feedback), and finally to get a better understanding of the formation and evolution of such rare and short-living supergiant HMXBs in our Galaxy.
High Mass X-ray Binaries (HMXB) have been revealed by a wealth of multi-wavelength observations, from X-ray to optical and infrared domain. After describing the 3 different kinds of HMXB, we focus on 3 HMXB hosting supergiant stars: IGR J16320-4751, IGR J16465-4507 and IGR J16318-4848, respectively called The Good, The Bad and The Ugly. We review in these proceedings what the observations of these sources have brought to light concerning our knowledge of HMXB, and what part still remains in the dark side. Many questions are still pending, related to accretion processes, stellar wind properties in these massive and active stars, and the overall evolution due to transfer of mass and angular momentum between the companion star and the compact object. Future observations should be able to answer these questions, which constitute the dark side of HMXB.
142 - L. Ducci 2010
Supergiant Fast X-ray Transients (SFXTs) are a new class of High Mass X-ray Binaries, discovered by the INTEGRAL satellite, which display flares lasting from minutes to hours, with peak luminosity of 1E36-1E37 erg/s. Outside the bright outbursts, they show a frequent long-term flaring activity reaching an X-ray luminosity level of 1E33-1E34 erg/s, as recently observed with the Swift satellite. Since a few persistent High Mass X-ray Binaries (HMXBs) with supergiant donors show flares with properties similar to those observed in SFXTs, it has been suggested that the flaring activity in both classes could be produced by the same mechanism, probably the accretion of clumps composing the supergiant wind. We have developed a new clumpy wind model for OB supergiants with both a spherical and a non spherical symmetry for the outflow. We have investigated the effects of the accretion of a clumpy wind onto a neutron star in both classes of persistent and transient HMXBs.
Strong winds from massive stars are a topic of interest to a wide range of astrophysical fields. In High-Mass X-ray Binaries the presence of an accreting compact object on the one side allows to infer wind parameters from studies of the varying properties of the emitted X-rays; but on the other side the accretors gravity and ionizing radiation can strongly influence the wind flow. Based on a collaborative effort of astronomers both from the stellar wind and the X-ray community, this presentation attempts to review our current state of knowledge and indicate avenues for future progress.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا