Do you want to publish a course? Click here

Testing atomic collision theory with the two-photon continuum of astrophysical nebulae

55   0   0.0 ( 0 )
 Added by Francisco Guzman
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Accurate rates for energy-degenerate l-changing collisions are needed to determine cosmological abundances and recombination. There are now several competing theories for the treatment of this process, and it is not possible to test these experimentally. We show that the H I two-photon continuum produced by astrophysical nebulae is strongly affected by l-changing collisions. We perform an analysis of the different underlying atomic processes and simulate the recombination and two-photon spectrum of a nebula containing H and He. We provide an extended set of effective recombination coefficients and updated l-changing 2s-2p transition rates using several competing theories. In principle, accurate astronomical observations could determine which theory is correct.



rate research

Read More

A review of a renewed effort to recalculate astrophysical opacities using the R-Matrix method is presented. The computational methods and new extensions are described. Resulting enhancements found in test calculations under stellar interior conditions compared to the Opacity Project could potentially lead to the resolution of the solar abundances problem, as well as discrepancies between recent experimental measurements at the Sandia Z-pinch inertial confinement fusion device and theoretical opacity models. Outstanding issues also discussed are: (i) accuracy, convergence, and completeness of atomic calculations, (ii) improvements in the Equation-of-State of high-temperature-density plasmas, and (iii) redistribution of resonant oscillator strength in the bound-free continuum, and (iv) plasma broadening of auotionizing resonances.
Fundamental atomic parameters, such as oscillator strengths, play a key role in modelling and understanding the chemical composition of stars in the universe. Despite the significant work underway to produce these parameters for many astrophysically important ions, uncertainties in these parameters remain large and can propagate throughout the entire field of astronomy. The Belgian repository of fundamental atomic data and stellar spectra (BRASS) aims to provide the largest systematic and homogeneous quality assessment of atomic data to date in terms of wavelength, atomic and stellar parameter coverage. To prepare for it, we first compiled multiple literature occurrences of many individual atomic transitions, from several atomic databases of astrophysical interest, and assessed their agreement. Several atomic repositories were searched and their data retrieved and formatted in a consistent manner. Data entries from all repositories were cross-matched against our initial BRASS atomic line list to find multiple occurrences of the same transition. Where possible we used a non-parametric cross-match depending only on electronic configurations and total angular momentum values. We also checked for duplicate entries of the same physical transition, within each retrieved repository, using the non-parametric cross-match. We report the cross-matched transitions for each repository and compare their fundamental atomic parameters. We find differences in log(gf) values of up to 2 dex or more. We also find and report that ~2% of our line list and Vienna Atomic Line Database retrievals are composed of duplicate transitions. Finally we provide a number of examples of atomic spectral lines with different log(gf) values, and discuss the impact of these uncertain log(gf) values on quantitative spectroscopy. All cross-matched atomic data and duplicate transitions are available to download at brass.sdf.org.
395 - Ofelia Pisanti 2019
In the era of multi-messenger astronomy, neutrinos are among the most important astronomical messengers, due to their interaction properties. In these lessons I briefly review the main issues concerning the theory on astrophysical neutrinos.
We investigate the collective scattering of coherent light from a thermal alkali-metal vapor with temperatures ranging from 350 to 450 K, corresponding to average atomic spacings between $0.7 lambda$ and $0.1 lambda$. We develop a theoretical model treating the atomic ensemble as coherent, interacting, radiating dipoles. We show that the two-time second-order correlation function of a thermal ensemble can be described by an average of randomly positioned atomic pairs. Our model illustrates good agreement with the experimental results. Furthermore, we show how fine-tuning of the experimental parameters may make it possible to explore several photon statistics regimes.
Neutrinos mix and have mass differences, so decays from one to another must occur. But how fast? The best direct limits on non-radiative decays, based on solar and atmospheric neutrinos, are weak, $tau gtrsim 10^{-3}$ s ($m$/eV) or much worse. Greatly improved sensitivity, $tau sim 10^3$ s ($m$/eV), will eventually be obtained using neutrinos from distant astrophysical sources, but large uncertainties --- in neutrino properties, source properties, and detection aspects --- do not allow this yet. However, there is a way forward now. We show that IceCube diffuse neutrino measurements, supplemented by improvements expected in the near term, can increase sensitivity to $tau sim 10$ s ($m$/eV) for all neutrino mass eigenstates. We provide a roadmap for the necessary analyses and show how to manage the many uncertainties. If limits are set, this would definitively rule out the long-considered possibility that neutrino decay affects solar, atmospheric, or terrestrial neutrino experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا