Do you want to publish a course? Click here

Scalable Architecture for Anomaly Detection and Visualization in Power Generating Assets

51   0   0.0 ( 0 )
 Added by Paras Jain
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Power-generating assets (e.g., jet engines, gas turbines) are often instrumented with tens to hundreds of sensors for monitoring physical and performance degradation. Anomaly detection algorithms highlight deviations from predetermined benchmarks with the goal of detecting incipient faults. We are developing an integrated system to address three key challenges within analyzing sensor data from power-generating assets: (1) difficulty in ingesting and analyzing data from large numbers of machines; (2) prevalence of false alarms generated by anomaly detection algorithms resulting in unnecessary downtime and maintenance; and (3) lack of an integrated visualization that helps users understand and explore the flagged anomalies and relevant sensor context in the energy domain. We present preliminary results and our key findings in addressing these challenges. Our systems scalable event ingestion framework, based on OpenTSDB, ingests nearly 400,000 sensor data samples per seconds using a 30 machine cluster. To reduce false alarm rates, we leverage the False Discovery Rate (FDR) algorithm which significantly reduces the number of false alarms. Our visualization tool presents the anomalies and associated content flagged by the FDR algorithm to inform users and practitioners in their decision making process. We believe our integrated platform will help reduce maintenance costs significantly while increasing asset lifespan. We are working to extend our system on multiple fronts, such as scaling to more data and more compute nodes (70 in total).



rate research

Read More

The amount of data in real-time, such as time series and streaming data, available today continues to grow. Being able to analyze this data the moment it arrives can bring an immense added value. However, it also requires a lot of computational effort and new acceleration techniques. As a possible solution to this problem, this paper proposes a hardware architecture for Typicality and Eccentricity Data Analytic (TEDA) algorithm implemented on Field Programmable Gate Arrays (FPGA) for use in data streaming anomaly detection. TEDA is based on a new approach to outlier detection in the data stream context. In order to validate the proposals, results of the occupation and throughput of the proposed hardware are presented. Besides, the bit accurate simulation results are also presented. The project aims to Xilinx Virtex-6 xc6vlx240t-1ff1156 as the target FPGA.
Data-intensive applications impact many domains, and their steadily increasing size and complexity demands high-performance, highly usable environments. We integrate a set of ideas developed in various data science and data engineering frameworks. They employ a set of operators on specific data abstractions that include vectors, matrices, tensors, graphs, and tables. Our key concepts are inspired from systems like MPI, HPF (High-Performance Fortran), NumPy, Pandas, Spark, Modin, PyTorch, TensorFlow, RAPIDS(NVIDIA), and OneAPI (Intel). Further, it is crucial to support different languages in everyday use in the Big Data arena, including Python, R, C++, and Java. We note the importance of Apache Arrow and Parquet for enabling language agnostic high performance and interoperability. In this paper, we propose High-Performance Tensors, Matrices and Tables (HPTMT), an operator-based architecture for data-intensive applications, and identify the fundamental principles needed for performance and usability success. We illustrate these principles by a discussion of examples using our software environments, Cylon and Twister2 that embody HPTMT.
Software Defined Networks (SDNs) have dramatically simplified network management. However, enabling pure SDNs to respond in real-time while handling massive amounts of data still remains a challenging task. In contrast, fog computing has strong potential to serve large surges of data in real-time. SDN control plane enables innovation, and greatly simplifies network operations and management thereby providing a promising solution to implement energy and performance aware SDN-enabled fog computing. Besides, power efficiency and performance evaluation in SDN-enabled fog computing is an area that has not yet been fully explored by the research community. We present a novel SDN-enabled fog architecture to improve power efficacy and performance by leveraging cooperative and non-cooperative policy-based computing. Preliminary results from extensive simulation demonstrate an improvement in the power utilization as well as the overall performance (i.e., processing time, response time). Finally, we discuss several open research issues that need further investigation in the future.
Reliability is a cumbersome problem in High Performance Computing Systems and Data Centers evolution. During operation, several types of fault conditions or anomalies can arise, ranging from malfunctioning hardware to improper configurations or imperfect software. Currently, system administrator and final users have to discover it manually. Clearly this approach does not scale to large scale supercomputers and facilities: automated methods to detect faults and unhealthy conditions is needed. Our method uses a type of neural network called autoncoder trained to learn the normal behavior of a real, in-production HPC system and it is deployed on the edge of each computing node. We obtain a very good accuracy (values ranging between 90% and 95%) and we also demonstrate that the approach can be deployed on the supercomputer nodes without negatively affecting the computing units performance.
The global economic recession and the shrinking budget of IT projects have led to the need of development of integrated information systems at a lower cost. Today, the emerging phenomenon of cloud computing aims at transforming the traditional way of computing by providing both software applications and hardware resources as a service. With the rapid evolution of Information Communication Technology (ICT) governments, organizations and businesses are looking for solutions to improve their services and integrate their IT infrastructures. In recent years advanced technologies such as SOA and Cloud computing have been evolved to address integration problems. The Clouds enormous capacity with comparable low cost makes it an ideal platform for SOA deployment. This paper deals with the combined approach of Cloud and Service Oriented Architecture along with a Case Study and a review.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا