Do you want to publish a course? Click here

Power and Performance Efficient SDN-Enabled Fog Architecture

76   0   0.0 ( 0 )
 Added by Adnan Akhunzada
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Software Defined Networks (SDNs) have dramatically simplified network management. However, enabling pure SDNs to respond in real-time while handling massive amounts of data still remains a challenging task. In contrast, fog computing has strong potential to serve large surges of data in real-time. SDN control plane enables innovation, and greatly simplifies network operations and management thereby providing a promising solution to implement energy and performance aware SDN-enabled fog computing. Besides, power efficiency and performance evaluation in SDN-enabled fog computing is an area that has not yet been fully explored by the research community. We present a novel SDN-enabled fog architecture to improve power efficacy and performance by leveraging cooperative and non-cooperative policy-based computing. Preliminary results from extensive simulation demonstrate an improvement in the power utilization as well as the overall performance (i.e., processing time, response time). Finally, we discuss several open research issues that need further investigation in the future.



rate research

Read More

Today, wearable internet-of-things (wIoT) devices continuously flood the cloud data centers at an enormous rate. This increases a demand to deploy an edge infrastructure for computing, intelligence, and storage close to the users. The emerging paradigm of fog computing could play an important role to make wIoT more efficient and affordable. Fog computing is known as the cloud on the ground. This paper presents an end-to-end architecture that performs data conditioning and intelligent filtering for generating smart analytics from wearable data. In wIoT, wearable sensor devices serve on one end while the cloud backend offers services on the other end. We developed a prototype of smart fog gateway (a middle layer) using Intel Edison and Raspberry Pi. We discussed the role of the smart fog gateway in orchestrating the process of data conditioning, intelligent filtering, smart analytics, and selective transfer to the cloud for long-term storage and temporal variability monitoring. We benchmarked the performance of developed prototypes on real-world data from smart e-textile gloves. Results demonstrated the usability and potential of proposed architecture for converting the real-world data into useful analytics while making use of knowledge-based models. In this way, the smart fog gateway enhances the end-to-end interaction between wearables (sensor devices) and the cloud.
In the era when the market segment of Internet of Things (IoT) tops the chart in various business reports, it is apparently envisioned that the field of medicine expects to gain a large benefit from the explosion of wearables and internet-connected sensors that surround us to acquire and communicate unprecedented data on symptoms, medication, food intake, and daily-life activities impacting ones health and wellness. However, IoT-driven healthcare would have to overcome many barriers, such as: 1) There is an increasing demand for data storage on cloud servers where the analysis of the medical big data becomes increasingly complex, 2) The data, when communicated, are vulnerable to security and privacy issues, 3) The communication of the continuously collected data is not only costly but also energy hungry, 4) Operating and maintaining the sensors directly from the cloud servers are non-trial tasks. This book chapter defined Fog Computing in the context of medical IoT. Conceptually, Fog Computing is a service-oriented intermediate layer in IoT, providing the interfaces between the sensors and cloud servers for facilitating connectivity, data transfer, and queryable local database. The centerpiece of Fog computing is a low-power, intelligent, wireless, embedded computing node that carries out signal conditioning and data analytics on raw data collected from wearables or other medical sensors and offers efficient means to serve telehealth interventions. We implemented and tested an fog computing system using the Intel Edison and Raspberry Pi that allows acquisition, computing, storage and communication of the various medical data such as pathological speech data of individuals with speech disorders, Phonocardiogram (PCG) signal for heart rate estimation, and Electrocardiogram (ECG)-based Q, R, S detection.
Systematic checkpointing of the machine state makes restart of execution from a safe state possible upon detection of an error. The time and energy overhead of checkpointing, however, grows with the frequency of checkpointing. Amortizing this overhead becomes especially challenging, considering the growth of expected error rates, as checkpointing frequency tends to increase with increasing error rates. Based on the observation that due to imbalanced technology scaling, recomputing a data value can be more energy efficient than retrieving (i.e., loading) a stored copy, this paper explores how recomputation of data values (which otherwise would be read from a checkpoint from memory or secondary storage) can reduce the machine state to be checkpointed, and thereby reduce the checkpointing overhead. Specifically, the resulting amnesic checkpointing framework AmnesiCHK can reduce the storage overhead by up to 23.91%; time overhead, by 11.92%; and energy overhead, by 12.53%, respectively, even in a relatively small scale system.
We introduce a system for Autonomic Management of Power Consumption in setups that involve Internet of Things (IoT) and Fog Computing. The Central IoT (CIoT) is a Fog Computing based solution to provide advanced orchestration mechanisms to manage dynamic duty cycles for extra energy savings. The solution works by adjusting Home (H) and Away (A) cycles based on contextual information, like environmental conditions, user behavior, behavior variation, regulations on energy and network resources utilization, among others. Performance analysis through a proof of concept present average energy savings of 58.4%, reaching up to 61.51% when augmenting with a scheduling system and variable long sleep cycles (LS). However, there is no linear relation increasing LS time and more savings. The significance of this research is to promote autonomic management as a solution to develop more energy efficient buildings and smarter cities, towards sustainable goals.
This is the first paper to address the topology structure of Job Edge-Fog interconnection network in the perspective of network creation game. A two level network creation game model is given, in which the first level is similar to the traditional network creation game with total length objective to other nodes. The second level adopts two types of cost functions, one is created based on the Jackson-Wolinsky type of distance based utility, another is created based on the Network-Only Cost in the IoT literature. We show the performance of this two level game (Price of Anarchy). This work discloses how the selfish strategies of each individual device can influence the global topology structure of the job edge-fog interconnection network and provides theoretical foundations of the IoT infrastructure construction. A significant advantage of this framework is that it can avoid solving the traditional expensive and impractical quadratic assignment problem, which was the typical framework to study this task. Furthermore, it can control the systematic performance based only on one or two cost parameters of the job edge-fog networks, independently and in a distributed way.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا