Do you want to publish a course? Click here

Binding energies: new values and impact on the efficiency of chemical desorption

71   0   0.0 ( 0 )
 Added by Valentine Wakelam
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent laboratory measurements have confirmed that chemical desorption (desorption of products due to exothermic surface reactions) can be an efficient process. The impact of including this process into gas-grain chemical models entirely depends on the formalism used and the associated parameters. Among these parameters, binding energies are probably the most uncertain ones for the moment. We propose a new model to compute binding energy of species to water ice surfaces. We have also compared the model results using either the new chemical desorption model proposed by Minissale et al. (2016) or the one of Garrod et al. (2007). The new binding energies have a strong impact on the formation of complex organic molecules. In addition, the new chemical desorption model from Minissale produces a much smaller desorption of these species and also of methanol. Combining the two effects, the abundances of CH3OH and COMs observed in cold cores cannot be reproduced by astrochemical models anymore.



rate research

Read More

The abundance of interstellar ice constituents is usually expressed with respect to the water ice because, in denser regions, a significant portion of the interstellar grain surface would be covered by water ice. The binding energy (BE), or adsorption energy of the interstellar species regulates the chemical complexity of the interstellar grain mantle. Due to the high abundance of water ice, the BE of surface species with the water is usually provided and widely used in astrochemical modeling. However, the hydrogen molecules would cover some part of the grain mantle in the denser and colder part of the interstellar medium. Even at around ~ 10K, few atoms and simple molecules with lower adsorption energies can migrate through the surface. The BE of the surface species with H2 substrate would be very different from that of a water substrate. However, adequate information regarding these differences is lacking. Here, we employ the quantum chemical calculation to provide the BE of 95 interstellar species with H2 substrate. These are representative of the BEs of species to a H2 overlayer on a grain surface. On average, we notice that the BE with the H2 monomer substrate is almost ten times lower than the BE of these species reported earlier with the H2 O c-tetramer configuration. The encounter desorption of H and H2 was introduced (with ED (H, H2 ) =45 K and ED (H2 , H2 ) =23 K) to have a realistic estimation of the abundances of the surface species in the colder and denser region. Our quantum chemical calculations yield higher adsorption energy of H2 than that of H (ED (H, H2 ) = 23 - 25 K and ED (H2, H2 ) =67 - 79 K). We further implement an astrochemical model to study the effect of encounter desorption with the resent realistic estimation. The encounter desorption of the N atom (calculations yield ED (N, H2 ) =83 K) is introduced to study the differences with its inclusion.
130 - A.I. Vasyunin 2010
We study the impact of dust evolution in a protoplanetary disk around a T Tauri star on the disk chemical composition. For the first time we utilize a comprehensive model of dust evolution which includes growth, fragmentation and sedimentation. Specific attention is paid to the influence of grain evolution on the penetration of the UV field in the disk. A chemical model that includes a comprehensive set of gas phase and grain surface chemical reactions is used to simulate the chemical structure of the disk. The main effect of the grain evolution on the disk chemical composition comes from sedimentation, and, to a lesser degree, from the reduction of the total grain surface area. The net effect of grain growth is suppressed by the fragmentation process which maintains a population of small grains, dominating the total grain surface area. We consider three models of dust properties. In model GS both growth and sedimentation are taken into account. In models A5 and A4 all grains are assumed to have the same size (10(-5) cm and 10(-4) cm, respectively) with constant gas-to-dust mass ratio of 100. Like in previous studies, the three-layer pattern (midplane, molecular layer, hot atmosphere) in the disk chemical structure is preserved in all models, but shifted closer to the midplane in models with increased grain size (GS and A4). Unlike other similar studies, we find that in models GS and A4 column densities of most gas-phase species are enhanced by 1-3 orders of magnitude relative to those in a model with pristine dust (A5), while column densities of their surface counterparts are decreased. We show that column densities of certain species, like C2H, HC(2n+1)N (n=0-3), H2O and some other molecules, as well as the C2H2/HCN abundance ratio which are accessible with Herschel and ALMA can be used as observational tracers of early stages of the grain evolution process in protoplanetary disks.
Galactic disc chemical evolution models generally ignore azimuthal surface density variation that can introduce chemical abundance azimuthal gradients. Recent observations, however, have revealed chemical abundance changes with azimuth in the gas and stellar components of both the Milky Way and external galaxies. To quantify the effects of spiral arm density fluctuations on the azimuthal variations of the oxygen and iron abundances in disc galaxies. We develop a new 2D galactic disc chemical evolution model, capable of following not just radial but also azimuthal inhomogeneities. The density fluctuations resulting from a Milky Way-like N-body disc formation simulation produce azimuthal variations in the oxygen abundance gradients of the order of 0.1 dex. Moreover, in agreement with the most recent observations in external galaxies, the azimuthal variations are more evident in the outer galactic regions. Using a simple analytical model, we show that the largest fluctuations with azimuth result near the spiral structure corotation resonance, where the relative speed between spiral and gaseous disc is the slowest. In conclusion we provided a new 2D chemical evolution model capable of following azimuthal density variations. Density fluctuations extracted from a Milky Way-like dynamical model lead to a scatter in the azimuthal variations of the oxygen abundance gradient in agreement with observations in external galaxies. We interpret the presence of azimuthal scatter at all radii by the presence of multiple spiral modes moving at different pattern speeds, as found in both observations and numerical simulations.
The electronic and optical properties of monolayer transition-metal dichalcogenides (TMDs) and van der Waals heterostructures are strongly subject to their dielectric environment. In each layer the field lines of the Coulomb interaction are screened by the adjacent material, which reduces the single-particle band gap as well as exciton and trion binding energies. By combining an electrostatic model for a dielectric hetero-multi-layered environment with semiconductor many-particle methods, we demonstrate that the electronic and optical properties are sensitive to the interlayer distances on the atomic scale. Spectroscopical measurements in combination with a direct solution of a three-particle Schrodinger equation reveal trion binding energies that correctly predict recently measured interlayer distances.
130 - Yong Shi 2021
In this study we demonstrate that stellar masses of galaxies (Mstar) are universally correlated through a double power law function with the product of the dynamical velocities (Ve) and sizes to one-fourth power (Re^0.25) of galaxies, both measured at the effective radii. The product VeRe^0.25 represents the fourth root of the total binding energies within effective radii of galaxies. This stellar mass-binding energy correlation has an observed scatter of 0.14 dex in log(VeRe^0.25) and 0.46 dex in log(Mstar). It holds for a variety of galaxy types over a stellar mass range of nine orders of magnitude, with little evolution over cosmic time. A toy model of self-regulation between binding energies and supernovae feedback is shown to be able to reproduce the observed slopes, but the underlying physical mechanisms are still unclear. The correlation can be a potential distance estimator with an uncertainty of 0.2 dex independent of the galaxy type.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا