Do you want to publish a course? Click here

Cellular resolutions from mapping cones

167   0   0.0 ( 0 )
 Added by Anton Dochtermann
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

One can iteratively obtain a free resolution of any monomial ideal $I$ by considering the mapping cone of the map of complexes associated to adding one generator at a time. Herzog and Takayama have shown that this procedure yields a minimal resolution if $I$ has linear quotients, in which case the mapping cone in each step cones a Koszul complex onto the previously constructed resolution. Here we consider cellular realizations of these resolutions. Extending a construction of Mermin we describe a regular CW-complex that supports the resolutions of Herzog and Takayama in the case that $I$ has a `regular decomposition function. By varying the choice of chain map we recover other known cellular resolutions, including the `box of complexes resolutions of Corso, Nagel, and Reiner and the related `homomorphism complex resolutions of Dochtermann and Engstrom. Other choices yield combinatorially distinct complexes with interesting structure, and suggests a notion of a `space of cellular resolutions.



rate research

Read More

Minimal cellular resolutions of the edge ideals of cointerval hypergraphs are constructed. This class of d-uniform hypergraphs coincides with the complements of interval graphs (for the case d=2), and strictly contains the class of `strongly stable hypergraphs corresponding to pure shifted simplicial complexes. The polyhedral complexes supporting the resolutions are described as certain spaces of directed graph homomorphisms, and are realized as subcomplexes of mixed subdivisions of the Minkowski sums of simplices. Resolutions of more general hypergraphs are obtained by considering decompositions into cointerval hypergraphs.
Let G be a simple graph and let J be its ideal of vertex covers. We give a graph theoretical description of the irreducible b-vertex covers of G, i.e., we describe the minimal generators of the symbolic Rees algebra of J. Then we study the irreducible b-vertex covers of the blocker of G, i.e., we study the minimal generators of the symbolic Rees algebra of the edge ideal of G. We give a graph theoretical description of the irreducible binary b-vertex covers of the blocker of G. It is shown that they correspond to irreducible induced subgraphs of G. As a byproduct we obtain a method, using Hilbert bases, to obtain all irreducible induced subgraphs of G. In particular we obtain all odd holes and antiholes. We study irreducible graphs and give a method to construct irreducible b-vertex covers of the blocker of G with high degree relative to the number of vertices of G.
We show that the property of a standard graded algebra R being Cohen-Macaulay is characterized by the existence of a pure Cohen-Macaulay R-module corresponding to any degree sequence of length at most depth(R). We also give a relation in terms of graded Betti numbers, called the Herzog-Kuhl equations, for a pure R-module M to satisfy the condition dim(R) - depth(R) = dim(M) - depth(M). When R is Cohen-Macaulay, we prove an analogous result characterizing all graded Cohen-Macaulay R-modules.
An explicit combinatorial minimal free resolution of an arbitrary monomial ideal $I$ in a polynomial ring in $n$ variables over a field of characteristic $0$ is defined canonically, without any choices, using higher-dimensional generalizations of combined spanning trees for cycles and cocycles (hedges) in the upper Koszul simplicial complexes of $I$ at lattice points in $mathbb{Z}^n$. The differentials in these sylvan resolutions are expressed as matrices whose entries are sums over lattice paths of weights determined combinatorially by sequences of hedges (hedgerows) along each lattice path. This combinatorics enters via an explicit matroidal expression for the Moore-Penrose pseudoinverses of the differentials in any CW complex as weighted averages of splittings defined by hedges. This Hedge Formula also yields a projection formula from CW chains to boundaries. The translation from Moore-Penrose combinatorics to free resolutions relies on Wall complexes, which construct minimal free resolutions of graded ideals from vertical splittings of Koszul bicomplexes. The algebra of Wall complexes applied to individual hedgerows yields explicit but noncanonical combinatorial minimal free resolutions of arbitrary monomial ideals in any characteristic.
In this memoir, we give a completely constructive version of the celebrate book Finite Free Resolutions by Northcott, and of some other results related to the depth `a la Hochster, the Cayley complexes and their determinants, and the finite projective resolutions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا