Do you want to publish a course? Click here

Novel Magnetism and Local Symmetry Breaking in a Mott Insulator with Strong Spin Orbit Interactions

67   0   0.0 ( 0 )
 Added by Vesna Mitrovic
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Study of the combined effects of strong electronic correlations with spin-orbit coupling (SOC) represents a central issue in quantum materials research. Predicting emergent properties represents a huge theoretical problem since the presence of SOC implies that the spin is not a good quantum number. Existing theories propose the emergence of a multitude of exotic quantum phases, distinguishable by either local point symmetry breaking or local spin expectation values, even in materials with simple cubic crystal structure such as Ba$_2$NaOsO$_6$. Experimental tests of such theories by local probes are highly sought for. Here, we report on local measurements designed to concurrently probe spin and orbital/lattice degrees of freedom of Ba$_2$NaOsO$_6$. We find that a novel canted ferromagnetic phase which is preceded by local point symmetry breaking is stabilized at low temperatures, as predicted by quantum theories involving multipolar spin interactions.



rate research

Read More

126 - W. Liu , R. Cong , E. Garcia 2017
We report $^{23}$Na nuclear magnetic resonance (NMR) measurements of the Mott insulator with strong spin-orbit interaction Ba$_{2}$NaOsO$_{6}$ as a function of temperature in different magnetic fields ranging from 7 T to 29 T. The measurements, intended to concurrently probe spin and orbital/lattice degrees of freedom, are an extension of our work at lower fields reported in Nat. Commun., v 8, 14407 (2017). We have identified clear quantitative NMR signatures that display the appearance of a canted ferromagnetic phase, which is preceded by local point symmetry breaking. We have compiled the field temperature phase diagram extending up to 29 T. We find that the broken local point symmetry phase extends over a wider temperature range as magnetic field increases.
157 - C. H. Wong , R.A. Duine 2012
We investigate topological transport in a spin-orbit coupled bosonic Mott insulator. We show that interactions can lead to anomalous quasi-particle dynamics even when the spin-orbit coupling is abelian. To illustrate the latter, we consider the spin-orbit coupling realized in the experiment of Lin textit{et al}. [Nature (London) textbf{471}, 83 (2011)]. For this spin-orbit coupling, we compute the quasiparticle dispersions and spectral weights, the interaction-induced momentum space Berry curvature, and the momentum space distribution of spin density, and propose experimental signatures. Furthermore, we find that in our approximation for the single-particle propagator, the ground state can in principle support an integer Hall conductivity if the sum of the Chern numbers of the hole bands is nonzero.
130 - Q. Cui , J.-G. Cheng , W. Fan 2017
The perovskite SrIrO3 is an exotic narrow-band metal owing to a confluence of the strengths of the spin-orbit coupling (SOC) and the electron-electron correlations. It has been proposed that topological and magnetic insulating phases can be achieved by tuning the SOC, Hubbard interactions, and/or lattice symmetry. Here, we report that the substitution of nonmagnetic, isovalent Sn4+ for Ir4+ in the SrIr1-xSnxO3 perovskites synthesized under high pressure leads to a metal-insulator transition to an antiferromagnetic (AF) phase at TN > 225 K. The continuous change of the cell volume as detected by x-ray diffraction and the lamda-shape transition of the specific heat on cooling through TN demonstrate that the metal-insulator transition is of second-order. Neutron powder diffraction results indicate that the Sn substitution enlarges an octahedral-site distortion that reduces the SOC relative to the spin-spin exchange interaction and results in the type-G AF spin ordering below TN. Measurement of high-temperature magnetic susceptibility shows the evolution of magnetic coupling in the paramagnetic phase typical of weak itinerant-electron magnetism in the Sn-substituted samples. A reduced structural symmetry in the magnetically ordered phase leads to an electron gap opening at the Brillouin zone boundary below TN in the same way as proposed by Slater.
We propose a method for controlling the exchange interactions of Mott insulators with strong spin-orbit coupling. We consider a multiorbital system with strong spin-orbit coupling and a circularly polarized light field and derive its effective Hamiltonian in the strong-interaction limit. Applying this theory to a minimal model of $alpha$-RuCl$_{3}$, we show that the magnitudes and signs of three exchange interactions, $J$, $K$, and $Gamma$, can be changed simultaneously. Then, considering another case in which one of the hopping integrals has a different value and the other parameters are the same as those for $alpha$-RuCl$_{3}$, we show that the Heisenberg interaction $J$ can be made much smaller than the anisotropic exchange interactions $K$ and $Gamma$.
We present first principles calculations of the magnetic and orbital properties of Ba$_2$NaOsO$_6$ (BNOO), a 5$d^1$ Mott insulator with strong spin orbit coupling (SOC) in its low temperature emergent quantum phases. Our computational method takes into direct consideration recent NMR results that established that BNOO develops a local octahedral distortion preceding the formation of long range magnetic order. We found that the two-sublattice canted ferromagnetic ground state identified in Lu etal, Nature Comm. {bf 8}, 14407 (2017) is accompanied by a two-sublattice staggered orbital ordering pattern in which the $t_{2g}$ orbitals are selectively occupied as a result of strong spin orbit coupling. The staggered orbital order found here using first principles calculations asserts the previous proposal of Chen etal, Phys. Rev. B {bf 82}, 174440 (2010) and Lu etal, Nature Comm. {bf 8}, 14407 (2017), that two-sublattice magnetic structure is the very manifestation of staggered quadrupolar order. Therefore, our results affirm the essential role of multipolar spin interactions in the microscopic description of magnetism in systems with locally entangled spin and orbital degrees of freedom.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا