Do you want to publish a course? Click here

Constraining the Amount of Circumstellar Matter and Dust around Type Ia Supernovae through Near-Infrared Echoes

306   0   0.0 ( 0 )
 Added by Keiichi Maeda
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The circumstellar (CS) environment is key to understanding progenitors of type Ia supernovae (SNe Ia), as well as the origin of a peculiar extinction property toward SNe Ia for cosmological application. It has been suggested that multiple scatterings of SN photons by CS dust may explain the non-standard reddening law. In this paper, we examine the effect of re-emission of SN photons by CS dust in the infrared (IR) wavelength regime. This effect allows the observed IR light curves to be used as a constraint on the position/size and the amount of CS dust. The method was applied to observed near-infrared (NIR) SN Ia samples; meaningful upper limits on the CS dust mass were derived even under conservative assumptions. We thereby clarify a difficulty associated with the CS dust scattering model as a general explanation for the peculiar reddening law, while it may still apply to a sub-sample of highly reddened SNe Ia. For SNe Ia in general, the environment at the interstellar scale appears to be responsible for the non-standard extinction law. Furthermore, deeper limits can be obtained using the standard nature of SN Ia NIR light curves. In this application, an upper limit of Mdot ~10^{-8}-10^{-7} Msun/yr (for the wind velocity of ~10 km/s) is obtained for a mass loss rate from a progenitor up to ~0.01 pc, and Mdot ~10^{-7}-10^{-6} Msun/yr up to ~0.1 pc.



rate research

Read More

We present near-infrared (NIR) time-series spectroscopy, as well as complementary ultraviolet (UV), optical, and NIR data, of the Type Ia supernova (SN Ia) iPTF13ebh, which was discovered within two days from the estimated time of explosion. The first NIR spectrum was taken merely 2.3 days after explosion and may be the earliest NIR spectrum yet obtained of a SN Ia. The most striking features in the spectrum are several NIR C I lines, and the C I {lambda}1.0693 {mu}m line is the strongest ever observed in a SN Ia. Interestingly, no strong optical C II counterparts were found, even though the optical spectroscopic time series began early and is densely-cadenced. Except at the very early epochs, within a few days from the time of explosion, we show that the strong NIR C I compared to the weaker optical C II appears to be general in SNe Ia. iPTF13ebh is a fast decliner with {Delta}m15(B) = 1.79 $pm$ 0.01, and its absolute magnitude obeys the linear part of the width-luminosity relation. It is therefore categorized as a transitional event, on the fast-declining end of normal SNe Ia as opposed to subluminous/91bg-like objects. iPTF13ebh shows NIR spectroscopic properties that are distinct from both the normal and subluminous/91bg-like classes, bridging the observed characteristics of the two classes. These NIR observations suggest composition and density of the inner core similar to that of 91bg-like events, and a deep reaching carbon burning layer not observed in slower declining SNe Ia. There is also a substantial difference between the explosion times inferred from the early-time light curve and the velocity evolution of the Si II {lambda}0.6355 {mu}m line, implying a long dark phase of ~ 4 days.
CfAIR2 is a large homogeneously reduced set of near-infrared (NIR) light curves for Type Ia supernovae (SN Ia) obtained with the 1.3m Peters Automated InfraRed Imaging TELescope (PAIRITEL). This data set includes 4607 measurements of 94 SN Ia and 4 additional SN Iax observed from 2005-2011 at the Fred Lawrence Whipple Observatory on Mount Hopkins, Arizona. CfAIR2 includes JHKs photometric measurements for 88 normal and 6 spectroscopically peculiar SN Ia in the nearby universe, with a median redshift of z~0.021 for the normal SN Ia. CfAIR2 data span the range from -13 days to +127 days from B-band maximum. More than half of the light curves begin before the time of maximum and the coverage typically contains ~13-18 epochs of observation, depending on the filter. We present extensive tests that verify the fidelity of the CfAIR2 data pipeline, including comparison to the excellent data of the Carnegie Supernova Project. CfAIR2 contributes to a firm local anchor for supernova cosmology studies in the NIR. Because SN Ia are more nearly standard candles in the NIR and are less vulnerable to the vexing problems of extinction by dust, CfAIR2 will help the supernova cosmology community develop more precise and accurate extragalactic distance probes to improve our knowledge of cosmological parameters, including dark energy and its potential time variation.
Type Ia supernovae (SNe Ia) play key roles in revealing the accelerating expansion of the universe, but our knowledge about their progenitors is still very limited. Here we report the discovery of a rigid dichotomy in circumstellar (CS) environments around two subclasses of type Ia supernovae (SNe Ia) as defined by their distinct photospheric velocities. For the SNe Ia with high photospheric velocities (HV), we found a significant excess flux in blue light during 60-100 days past maximum, while this phenomenon is absent for SNe with normal photospheric velocity (Normal). This blue excess can be attributed to light echoes by circumstellar dust located at a distance of about 1-3x10^{17} cm from the HV subclass. Moreover, we also found that the HV SNe Ia show systematically evolving Na I absorption line by performing a systematic search of variable Na I absorption lines in spectra of all SNe Ia, whereas this evolution is rarely seen in Normal ones. The evolving Na I absorption can be modeled in terms of photoionization model, with the location of the gas clouds at a distance of about 2x10^{17} cm, in striking agreement with the location of CS dust inferred from B-band light curve excess. These observations show clearly that the progenitors of HV and Normal subclasses are systematically different, suggesting that they are likely from single and double degenerate progenitor systems, respectively.
Type Ia supernovae are bright stellar explosions distinguished by standardizable light curves that allow for their use as distance indicators for cosmological studies. Despite the highly successful use of these events in this capacity, many fundamental questions remain. Contemporary research investigates how properties of the progenitor system that follow from the host galaxy such as composition and age influence the brightness of an event with the goal of better understanding and assessing the intrinsic scatter in the brightness. We provide an overview of these supernovae and proposed progenitor systems, all of which involve one or more compact stars known as white dwarfs. We describe contemporary research investigating how the composition and structure of the progenitor white dwarf systematically influences the explosion outcome assuming the progenitor is a single white dwarf that has gained mass from a companion. We present results illustrating some of these systematic effects from our research.
A key tracer of the elusive progenitor systems of Type Ia supernovae (SNe Ia) is the detection of narrow blueshifted time-varying Na I D absorption lines, interpreted as evidence of circumstellar material (CSM) surrounding the progenitor system. The origin of this material is controversial, but the simplest explanation is that it results from previous mass loss in a system containing a white dwarf and a non-degenerate companion star. We present new single-epoch intermediate-resolution spectra of 17 low-redshift SNe Ia taken with XShooter on the ESO Very Large Telescope. Combining this sample with events from the literature, we confirm an excess (~20 per cent) of SNe Ia displaying blueshifted narrow Na I D absorption features compared to non-blueshifted Na I D features. The host galaxies of SNe Ia displaying blueshifted absorption profiles are skewed towards later-type galaxies, compared to SNe Ia that show no Na I D absorption, and SNe Ia displaying blueshifted narrow Na I D absorption features have broader light curves. The strength of the Na I D absorption is stronger in SNe Ia displaying blueshifted Na I D absorption features than those without blueshifted features, and the strength of the blueshifted Na I D is correlated with the B-V colour of the SN at maximum light. This strongly suggests the absorbing material is local to the SN. In the context of the progenitor systems of SNe Ia, we discuss the significance of these findings and other recent observational evidence on the nature of SN Ia progenitors. We present a summary that suggests there are at least two distinct populations of normal, cosmologically useful SNe Ia.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا