Do you want to publish a course? Click here

Synthetic to Real Adaptation with Generative Correlation Alignment Networks

182   0   0.0 ( 0 )
 Added by Xingchao Peng
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Synthetic images rendered from 3D CAD models are useful for augmenting training data for object recognition algorithms. However, the generated images are non-photorealistic and do not match real image statistics. This leads to a large domain discrepancy, causing models trained on synthetic data to perform poorly on real domains. Recent work has shown the great potential of deep convolutional neural networks to generate realistic images, but has not utilized generative models to address synthetic-to-real domain adaptation. In this work, we propose a Deep Generative Correlation Alignment Network (DGCAN) to synthesize images using a novel domain adaption algorithm. DGCAN leverages a shape preserving loss and a low level statistic matching loss to minimize the domain discrepancy between synthetic and real images in deep feature space. Experimentally, we show training off-the-shelf classifiers on the newly generated data can significantly boost performance when testing on the real image domains (PASCAL VOC 2007 benchmark and Office dataset), improving upon several existing methods.

rate research

Read More

Collecting well-annotated image datasets to train modern machine learning algorithms is prohibitively expensive for many tasks. One appealing alternative is rendering synthetic data where ground-truth annotations are generated automatically. Unfortunately, models trained purely on rendered images often fail to generalize to real images. To address this shortcoming, prior work introduced unsupervised domain adaptation algorithms that attempt to map representations between the two domains or learn to extract features that are domain-invariant. In this work, we present a new approach that learns, in an unsupervised manner, a transformation in the pixel space from one domain to the other. Our generative adversarial network (GAN)-based method adapts source-domain images to appear as if drawn from the target domain. Our approach not only produces plausible samples, but also outperforms the state-of-the-art on a number of unsupervised domain adaptation scenarios by large margins. Finally, we demonstrate that the adaptation process generalizes to object classes unseen during training.
104 - Weijia Wu , Ning Lu , Enze Xie 2020
Deep learning-based scene text detection can achieve preferable performance, powered with sufficient labeled training data. However, manual labeling is time consuming and laborious. At the extreme, the corresponding annotated data are unavailable. Exploiting synthetic data is a very promising solution except for domain distribution mismatches between synthetic datasets and real datasets. To address the severe domain distribution mismatch, we propose a synthetic-to-real domain adaptation method for scene text detection, which transfers knowledge from synthetic data (source domain) to real data (target domain). In this paper, a text self-training (TST) method and adversarial text instance alignment (ATA) for domain adaptive scene text detection are introduced. ATA helps the network learn domain-invariant features by training a domain classifier in an adversarial manner. TST diminishes the adverse effects of false positives~(FPs) and false negatives~(FNs) from inaccurate pseudo-labels. Two components have positive effects on improving the performance of scene text detectors when adapting from synthetic-to-real scenes. We evaluate the proposed method by transferring from SynthText, VISD to ICDAR2015, ICDAR2013. The results demonstrate the effectiveness of the proposed method with up to 10% improvement, which has important exploration significance for domain adaptive scene text detection. Code is available at https://github.com/weijiawu/SyntoReal_STD
Generative Adversarial Networks (GANs) have shown remarkable performance in image synthesis tasks, but typically require a large number of training samples to achieve high-quality synthesis. This paper proposes a simple and effective method, Few-Shot GAN (FSGAN), for adapting GANs in few-shot settings (less than 100 images). FSGAN repurposes component analysis techniques and learns to adapt the singular values of the pre-trained weights while freezing the corresponding singular vectors. This provides a highly expressive parameter space for adaptation while constraining changes to the pretrained weights. We validate our method in a challenging few-shot setting of 5-100 images in the target domain. We show that our method has significant visual quality gains compared with existing GAN adaptation methods. We report qualitative and quantitative results showing the effectiveness of our method. We additionally highlight a problem for few-shot synthesis in the standard quantitative metric used by data-efficient image synthesis works. Code and additional results are available at http://e-271.github.io/few-shot-gan.
105 - Ye Liu , Lei Zhu , Shunda Pei 2021
Single image dehazing is a challenging task, for which the domain shift between synthetic training data and real-world testing images usually leads to degradation of existing methods. To address this issue, we propose a novel image dehazing framework collaborating with unlabeled real data. First, we develop a disentangled image dehazing network (DID-Net), which disentangles the feature representations into three component maps, i.e. the latent haze-free image, the transmission map, and the global atmospheric light estimate, respecting the physical model of a haze process. Our DID-Net predicts the three component maps by progressively integrating features across scales, and refines each map by passing an independent refinement network. Then a disentangled-consistency mean-teacher network (DMT-Net) is employed to collaborate unlabeled real data for boosting single image dehazing. Specifically, we encourage the coarse predictions and refinements of each disentangled component to be consistent between the student and teacher networks by using a consistency loss on unlabeled real data. We make comparison with 13 state-of-the-art dehazing methods on a new collected dataset (Haze4K) and two widely-used dehazing datasets (i.e., SOTS and HazeRD), as well as on real-world hazy images. Experimental results demonstrate that our method has obvious quantitative and qualitative improvements over the existing methods.
Despite recent advances, the remaining bottlenecks in deep generative models are necessity of extensive training and difficulties with generalization from small number of training examples. We develop a new generative model called Generative Matching Network which is inspired by the recently proposed matching networks for one-shot learning in discriminative tasks. By conditioning on the additional input dataset, our model can instantly learn new concepts that were not available in the training data but conform to a similar generative process. The proposed framework does not explicitly restrict diversity of the conditioning data and also does not require an extensive inference procedure for training or adaptation. Our experiments on the Omniglot dataset demonstrate that Generative Matching Networks significantly improve predictive performance on the fly as more additional data is available and outperform existing state of the art conditional generative models.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا