No Arabic abstract
We study the role of field redefinitions in general scalar-tensor theories. In particular, we first focus on the class of field redefinitions linear in the spin-2 field and involving derivatives of the spin-0 mode, generically known as disformal transformations. We start by defining the action of a disformal transformation in the tangent space. Then, we take advantage of the great economy of means of the language of differential forms to compute the full transformation of Horndeskis theory under general disformal transformations. We obtain that Horndeskis action maps onto itself modulo a reduced set of non-Horndeski Lagrangians. These new Lagrangians are found to be invariant under disformal transformation that depend only in the first derivatives of the scalar. Moreover, these combinations of Lagrangians precisely appear when expressing in our basis the constraints of the recently proposed Extended Scalar-Tensor (EST) theories. These results allow us to classify the different orbits of scalar-tensor theories invariant under particular disformal transformations, namely the special disformal, kinetic disformal and disformal Horndeski orbits. In addition, we consider generalizations of this framework. We find that there are possible well-defined extended disformal transformations that have not been considered in the literature. However, they generically cannot link Horndeski theory with EST theories. Finally, we study further generalizations in which extra fields with different spin are included. These field redefinitions can be used to connect different gravity theories such as multi-scalar-tensor theories, generalized Proca theories and bi-gravity. We discuss how the formalism of differential forms could be useful for future developments in these lines.
We show that in a spontaneously broken effective gauge field theory, quantized in a general background $R_xi$-gauge, also the background fields undergo a non-linear (albeit background-gauge invariant) field redefinition induced by radiative corrections. This redefinition proves to be crucial in order to renormalize the coupling constants of gauge-invariant operators in a gauge-independent way. The classical background-quantum splitting is also in general non-linearly deformed (in a non gauge-invariant way) by radiative corrections. Remarkably, such deformations vanish in the Landau gauge, to all orders in the loop expansion.
While many aspects of general relativity have been tested, and general principles of quantum dynamics demand its quantization, there is no direct evidence for that. It has been argued that development of detectors sensitive to individual gravitons is unlikely, and perhaps impossible. We argue here, however, that measurement of polarization of the Cosmic Microwave Background due to a long wavelength stochastic background of gravitational waves from Inflation in the Early Universe would firmly establish the quantization of gravity.
We study inflation driven by the Higgs field in the Einstein-Cartan formulation of gravity. In this theory, the presence of the Holst and Nieh-Yan terms with the Higgs field non-minimally coupled to them leads to three additional coupling constants. For a broad range of parameters, we find that inflation is both possible and consistent with observations. In most cases, the spectral index is given by $n_s=1-2/N_star$ (with $N_star$ the number of e-foldings) whereas the tensor-to-scalar ratio $r$ can vary between about $10^{-10}$ and $1$. Thus, there are scenarios of Higgs inflation in the Einstein-Cartan framework for which the detection of gravitational waves from inflation is possible in the near future. In certain limits, the known models of Higgs inflation in the metric and Palatini formulations of gravity are reproduced. Finally, we discuss the robustness of inflationary dynamics against quantum corrections due to the scalar and fermion fields.
We develop an effective-field-theory (EFT) framework for inflation with various symmetry breaking pattern. As a prototype, we formulate anisotropic inflation from the perspective of EFT and construct an effective action of the Nambu-Goldstone bosons for the broken time translation and rotation symmetries. We also calculate the statistical anisotropy in the scalar two-point correlation function for concise examples of the effective action.
The final ringdown phase in a coalescence process is a valuable laboratory to test General Relativity and potentially constrain additional degrees of freedom in the gravitational sector. We introduce here an effective description for perturbations around spherically symmetric spacetimes in the context of scalar-tensor theories, which we apply to study quasi-normal modes for black holes with scalar hair. We derive the equations of motion governing the dynamics of both the polar and the axial modes in terms of the coefficients of the effective theory. Assuming the deviation of the background from Schwarzschild is small, we use the WKB method to introduce the notion of light ring expansion. This approximation is analogous to the slow-roll expansion used for inflation, and it allows us to express the quasinormal mode spectrum in terms of a small number of parameters. This work is a first step in describing, in a model independent way, how the scalar hair can affect the ringdown stage and leave signatures on the emitted gravitational wave signal. Potential signatures include the shifting of the quasi-normal spectrum, the breaking of isospectrality between polar and axial modes, and the existence of scalar radiation.