Do you want to publish a course? Click here

Diamond Detectors for the TOTEM Timing Upgrade

80   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper describes the design and the performance of the timing detector developed by the TOTEM Collaboration for the Roman Pots (RPs) to measure the Time-Of-Flight (TOF) of the protons produced in central diffractive interactions at the LHC. The measurement of the TOF of the protons allows the determination of the longitudinal position of the proton interaction vertex and its association with one of the vertices reconstructed by the CMS detectors. The TOF detector is based on single crystal Chemical Vapor Deposition (scCVD) diamond plates and is designed to measure the protons TOF with about 50 ps time precision. This upgrade to the TOTEM apparatus will be used in the LHC run 2 and will tag the central diffractive events up to an interaction pileup of about 1. A dedicated fast and low noise electronics for the signal amplification has been developed. The digitization of the diamond signal is performed by sampling the waveform. After introducing the physics studies that will most profit from the addition of these new detectors, we discuss in detail the optimization and the performance of the first TOF detector installed in the LHC in November 2015.



rate research

Read More

This paper describes the performance of a prototype timing detector, based on 50 micrometer thick Ultra Fast Silicon Detector, as measured in a beam test using a 180 GeV/c momentum pion beam. The dependence of the time precision on the pixel capacitance and the bias voltage is investigated here. A timing precision from 30 ps to 100 ps, depending on the pixel capacitance, has been measured at a bias voltage of 180 V. Timing precision has also been measured as a function of the bias voltage.
The TOTEM Experiment is designed to measure the total proton-proton cross-section with the luminosity-independent method and to study elastic and diffractive pp scattering at the LHC. To achieve optimum forward coverage for charged particles emitted by the pp collisions in the interaction point IP5, two tracking telescopes, T1 and T2, are installed on each side of the IP in the pseudorapidity region 3.1 < = |eta | < = 6.5, and special movable beam-pipe insertions - called Roman Pots (RP) - are placed at distances of +- 147 m and +- 220 m from IP5. This article describes in detail the working of the TOTEM detector to produce physics results in the first three years of operation and data taking at the LHC.
The development of Chemical Vapour Deposition (CVD) diamond detectors requests for novel signal amplifiers, capable to match the superb signal-to-noise ratio and timing response of these detectors. Existing amplifiers are still far away from this goal and are the dominant contributors to the overall system noise and the main source of degradation of the energy and timing resolution. We tested a number of commercial amplifiers designed for diamond detector readout to identify the best solution for a particular application. This application required a deposited energy threshold below 100 keV and timing resolution of the order of 200 ps at 200 keV. None of tested amplifiers satisfies these requirements. The best solution to such application found to be the Cividec C6 amplifier, which allows 100 keV minimal threshold, but its coincidence timing resolution at 200 keV is as large as 1.2 ns.
After pioneering gaseous detectors of single photon for RICH applications using CsI solid state photocathodes in MWPCs within the RD26 collaboration and by the constructions for the RICH detector of the COMPASS experiment at CERN SPS, in 2016 we have upgraded COMPASS RICH by novel gaseous photon detectors based on MPGD technology. Four novel photon detectors, covering a total active area of 1.5~m$^2$, have been installed in order to cope with the challenging efficiency and stability requirements of the COMPASS physics programme. They are the first application in an experiment of MPGD-based single photon detectors. All aspects of the upgrade are presented, including engineering, mass production, quality assessment and performance. Perspectives for further developments in the field of gaseous single photon detectors are also indicated.
262 - Sebastian N. White 2014
The PhaseII Upgrades of CMS are being planned for the High Luminosity LHC (HL-LHC) era when the mean number of interactions per beam crossing (in-time pileup) is expected to reach ~140-200. The potential backgrounds arising from mis-associated jets and photon showers, for example, during event reconstruction could be reduced if physics objects are tagged with an event time. This tag is fully complementary to the event vertex which is already commonly used to reduce mis-reconstruction. Since the tracking vertex resolution is typically ~10^{-3} (50 micron/4.8cm) of the rms vertex distribution, whereas only ~10^{-1} (i.e. 20 vs.170 picoseconds (psec)) is demonstrated for timing, it is often assumed that only photon (i.e. EM calorimeter or shower-max) timing is of interest. We show that the optimal solution will likely be a single timing layer which measures both charged particle and photon time (a pre-shower layer).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا