Do you want to publish a course? Click here

The QCD Equation of State to $mathcal{O}(mu_B^6)$ from Lattice QCD

88   0   0.0 ( 0 )
 Added by Prasad Hegde
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We calculated the QCD equation of state using Taylor expansions that include contributions from up to sixth order in the baryon, strangeness and electric charge chemical potentials. Calculations have been performed with the Highly Improved Staggered Quark action in the temperature range $Tin [135~{rm MeV}, 330~{rm MeV}]$ using up to four different sets of lattice cut-offs corresponding to lattices of size $N_sigma^3times N_tau$ with aspect ratio $N_sigma/N_tau=4$ and $N_tau =6-16$. The strange quark mass is tuned to its physical value and we use two strange to light quark mass ratios $m_s/m_l=20$ and $27$, which in the continuum limit correspond to a pion mass of about $160$ MeV and $140$ MeV espectively. Sixth-order results for Taylor expansion coefficients are used to estimate truncation errors of the fourth-order expansion. We show that truncation errors are small for baryon chemical potentials less then twice the temperature ($mu_Ble 2T$). The fourth-order equation of state thus is suitable for the modeling of dense matter created in heavy ion collisions with center-of-mass energies down to $sqrt{s_{NN}}sim 12$ GeV. We provide a parametrization of basic thermodynamic quantities that can be readily used in hydrodynamic simulation codes. The results on up to sixth order expansion coefficients of bulk thermodynamics are used for the calculation of lines of constant pressure, energy and entropy densities in the $T$-$mu_B$ plane and are compared with the crossover line for the QCD chiral transition as well as with experimental results on freeze-out parameters in heavy ion collisions. These coefficients also provide estimates for the location of a possible critical point. We argue that results on sixth order expansion coefficients disfavor the existence of a critical point in the QCD phase diagram for $mu_B/Tle 2$ and $T/T_c(mu_B=0) > 0.9$.

rate research

Read More

We present results for the QCD Equation of State at non-zero chemical potentials corresponding to the conserved charges in QCD using Taylor expansion upto sixth order in the baryon number, electric charge and strangeness chemical potentials. The latter two are constrained by the strangeness neutrality and a fixed electric charge to baryon number ratio. In our calculations, we use the Highly Improved Staggered Quarks (HISQ) discretization scheme at physical quark masses and at different values of the lattice spacings to control lattice cut-off effects. Furthermore we calculate the pressure along lines of constant energy density, which serve as proxies for the freeze-out conditions and discuss their dependence on $mu_B$ , which is necessary for hydrodynamic modelling near freezeout. We also provide an estimate of the radius of convergence of the Taylor series from the 6th order coefficients which provides a new constraint on the location of the critical end-point in the T-$mu_B$ plane of the QCD phase diagram.
We determine the equation of state of QCD at finite chemical potential, to order $(mu_B/T)^6$, for a system of 2+1 quark flavors. The simulations are performed at the physical mass for the light and strange quarks on several lattice spacings; the results are continuum extrapolated using lattices of up to $N_t=16$ temporal resolution. The QCD pressure and interaction measure are calculated along the isentropic trajectories in the $(T,~mu_B)$ plane corresponding to the RHIC Beam Energy Scan collision energies. Their behavior is determined through analytic continuation from imaginary chemical potentials of the baryonic density. We also determine the Taylor expansion coefficients around $mu_B=0$ from the simulations at imaginary chemical potentials. Strangeness neutrality and charge conservation are imposed, to match the experimental conditions.
107 - C. Alexandrou 2006
We evaluate the isovector nucleon electromagnetic form factors in quenched and full QCD on the lattice using Wilson fermions. In the quenched theory we use a lattice of spatial size 3 fm at beta=6.0 enabling us to reach low momentum transfers and a lowest pion mass of about 400 MeV. In the full theory we use a lattice of spatial size 1.9 fm at beta=5.6 and lowest pion mass of about 380 MeV enabling comparison with the results obtained in the quenched theory. We compare our lattice results to the isovector part of the experimentally measured form factors.
212 - C. Alexandrou 2010
We present results on the nucleon axial form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length $L=2.1$ fm and $L=2.8$ fm. Cut-off effects are investigated using three different values of the lattice spacings, namely $a=0.089$ fm, $a=0.070$ fm and $a=0.056$ fm. The nucleon axial charge is obtained in the continuum limit and chirally extrapolated to the physical pion mass enabling comparison with experiment.
The QCD equation of state at finite baryon density is studied in the framework of a Cluster Expansion Model (CEM), which is based on the fugacity expansion of the net baryon density. The CEM uses the two leading Fourier coefficients, obtained from lattice simulations at imaginary $mu_B$, as the only model input and permits a closed analytic form. Excellent description of the available lattice data at both $mu_B = 0$ and at imaginary $mu_B$ is obtained. We also demonstrate how the Fourier coefficients can be reconstructed from baryon number susceptibilities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا