No Arabic abstract
The QCD equation of state at finite baryon density is studied in the framework of a Cluster Expansion Model (CEM), which is based on the fugacity expansion of the net baryon density. The CEM uses the two leading Fourier coefficients, obtained from lattice simulations at imaginary $mu_B$, as the only model input and permits a closed analytic form. Excellent description of the available lattice data at both $mu_B = 0$ and at imaginary $mu_B$ is obtained. We also demonstrate how the Fourier coefficients can be reconstructed from baryon number susceptibilities.
We determine the equation of state of QCD at finite chemical potential, to order $(mu_B/T)^6$, for a system of 2+1 quark flavors. The simulations are performed at the physical mass for the light and strange quarks on several lattice spacings; the results are continuum extrapolated using lattices of up to $N_t=16$ temporal resolution. The QCD pressure and interaction measure are calculated along the isentropic trajectories in the $(T,~mu_B)$ plane corresponding to the RHIC Beam Energy Scan collision energies. Their behavior is determined through analytic continuation from imaginary chemical potentials of the baryonic density. We also determine the Taylor expansion coefficients around $mu_B=0$ from the simulations at imaginary chemical potentials. Strangeness neutrality and charge conservation are imposed, to match the experimental conditions.
We calculate the equation of state in 2+1 flavor QCD at finite temperature with physical strange quark mass and almost physical light quark masses using lattices with temporal extent Nt=8. Calculations have been performed with two different improved staggered fermion actions, the asqtad and p4 actions. Overall, we find good agreement between results obtained with these two O(a^2) improved staggered fermion discretization schemes. A comparison with earlier calculations on coarser lattices is performed to quantify systematic errors in current studies of the equation of state. We also present results for observables that are sensitive to deconfining and chiral aspects of the QCD transition on Nt=6 and 8 lattices. We find that deconfinement and chiral symmetry restoration happen in the same narrow temperature interval. In an Appendix we present a simple parametrization of the equation of state that can easily be used in hydrodynamic model calculations. In this parametrization we also incorporated an estimate of current uncertainties in the lattice calculations which arise from cutoff and quark mass effects. We estimate these systematic effects to be about 10 MeV
State-of-the-art lattice QCD studies of hot and dense strongly interacting matter currently rely on extrapolation from zero or imaginary chemical potentials. The ill-posedness of numerical analytic continuation puts severe limitations on the reliability of such methods. Here we use the more direct sign reweighting method to perform lattice QCD simulation of the QCD chiral transition at finite real baryon density on phenomenologically relevant lattices. This method does not require analytic continuation and avoids the overlap problem associated with generic reweighting schemes, so has only statistical but no uncontrolled systematic uncertainties for a fixed lattice setup. This opens up a new window to study hot and dense strongly interacting matter from first principles. We perform simulations up to a baryochemical potential-temperature ratio of $mu_B/T=2.5$ covering most of the RHIC Beam Energy Scan range in the chemical potential. We also clarify the connection of the approach to the more traditional phase reweighting method.
We report our recent studies on the finite density QCD obtained from lattice QCD simulation with clover-improved Wilson fermions of two flavor and RG-improved gauge action. We approach the subject from two paths, i.e., the imaginary and real chemical potentials.
We study the equation of state at finite temperature and density in two-flavor QCD with the RG-improved gluon action and the clover-improved Wilson quark action on a $ 16^3 times 4$ lattice. Along the lines of constant physics at $m_{rm PS}/m_{rm V} = 0.65$ and 0.80, we compute the second and forth derivatives of the grand canonical partition function with respect to the quark chemical potential $mu_q = (mu_u+mu_d)/2$ and the isospin chemical potential $mu_I = (mu_u-mu_d)/2$ at vanishing chemical potentials, and study the behaviors of thermodynamic quantities at finite $mu_q$ using these derivatives for the case $mu_I=0$. In particular, we study density fluctuations at none-zero temperature and density by calculating the quark number and isospin susceptibilities and their derivatives with respect to $mu_q$. To suppress statistical fluctuations, we also examine new techniques applicable at low densities. We find a large enhancement in the fluctuation of quark number when the density increased near the pseudo-critical temperature, suggesting a critical point at finite $mu_q$ terminating the first order transition line between hadronic and quark gluon plasma phases. This result agrees with the previous results using staggered-type quark actions qualitatively. Furthermore, we study heavy-quark free energies and Debye screening masses at finite density by measuring the first and second derivatives of these quantities for various color channels of heavy quark-quark and quark-anti-quark pairs. The results suggest that, to the leading order of $mu_q$, the interaction between two quarks becomes stronger at finite densities, while that between quark and anti-quark becomes weaker.