No Arabic abstract
We propose hMDAP, a hybrid framework for large-scale data analytical processing on Spark, to support multi-paradigm process (incl. OLAP, machine learning, and graph analysis etc.) in distributed environments. The framework features a three-layer data process module and a business process module which controls the former. We will demonstrate the strength of hMDAP by using traffic scenarios in a real world.
With the explosive increase of big data in industry and academic fields, it is necessary to apply large-scale data processing systems to analysis Big Data. Arguably, Spark is state of the art in large-scale data computing systems nowadays, due to its good properties including generality, fault tolerance, high performance of in-memory data processing, and scalability. Spark adopts a flexible Resident Distributed Dataset (RDD) programming model with a set of provided transformation and action operators whose operating functions can be customized by users according to their applications. It is originally positioned as a fast and general data processing system. A large body of research efforts have been made to make it more efficient (faster) and general by considering various circumstances since its introduction. In this survey, we aim to have a thorough review of various kinds of optimization techniques on the generality and performance improvement of Spark. We introduce Spark programming model and computing system, discuss the pros and cons of Spark, and have an investigation and classification of various solving techniques in the literature. Moreover, we also introduce various data management and processing systems, machine learning algorithms and applications supported by Spark. Finally, we make a discussion on the open issues and challenges for large-scale in-memory data processing with Spark.
A growing number of applications that generate massive streams of data need intelligent data processing and online analysis. Real-time surveillance systems, telecommunication systems, sensor networks and other dynamic environments are such examples. The imminent need for turning such data into useful information and knowledge augments the development of systems, algorithms and frameworks that address streaming challenges. The storage, querying and mining of such data sets are highly computationally challenging tasks. Mining data streams is concerned with extracting knowledge structures represented in models and patterns in non stopping streams of information. Generally, two main challenges are designing fast mining methods for data streams and need to promptly detect changing concepts and data distribution because of highly dynamic nature of data streams. The goal of this article is to analyze and classify the application of diverse data mining techniques in different challenges of data stream mining. In this paper, we present the theoretical foundations of data stream analysis and propose an analytical framework for data stream mining techniques.
Incremental processing is widely-adopted in many applications, ranging from incremental view maintenance, stream computing, to recently emerging progressive data warehouse and intermittent query processing. Despite many algorithms developed on this topic, none of them can produce an incremental plan that always achieves the best performance, since the optimal plan is data dependent. In this paper, we develop a novel cost-based optimizer framework, called Tempura, for optimizing incremental data processing. We propose an incremental query planning model called TIP based on the concept of time-varying relations, which can formally model incremental processing in its most general form. We give a full specification of Tempura, which can not only unify various existing techniques to generate an optimal incremental plan, but also allow the developer to add their rewrite rules. We study how to explore the plan space and search for an optimal incremental plan. We conduct a thorough experimental evaluation of Tempura in various incremental processing scenarios to show its effectiveness and efficiency.
In this paper, we propose a plugin-based framework for RDF stream processing named PRSP. Within this framework, we can employ SPARQL query engines to process C-SPARQL queries with maintaining the high performance of those engines in a simple way. Taking advantage of PRSP, we can process large-scale RDF streams in a distributed context via distributed SPARQL engines. Besides, we can evaluate the performance and correctness of existing SPARQL query engines in handling RDF streams in a united way, which amends the evaluation of them ranging from static RDF (i.e., RDF graph) to dynamic RDF (i.e., RDF stream). Finally, within PRSP, we experimently evaluate the correctness and the performance on YABench. The experiments show that PRSP can still maintain the high performance of those engines in RDF stream processing although there are some slight differences among them.
The study of causality or causal inference - how much a given treatment causally affects a given outcome in a population - goes way beyond correlation or association analysis of variables, and is critical in making sound data driven decisions and policies in a multitude of applications. The gold standard in causal inference is performing controlled experiments, which often is not possible due to logistical or ethical reasons. As an alternative, inferring causality on observational data based on the Neyman-Rubin potential outcome model has been extensively used in statistics, economics, and social sciences over several decades. In this paper, we present a formal framework for sound causal analysis on observational datasets that are given as multiple relations and where the population under study is obtained by joining these base relations. We study a crucial condition for inferring causality from observational data, called the strong ignorability assumption (the treatment and outcome variables should be independent in the joined relation given the observed covariates), using known conditional independences that hold in the base relations. We also discuss how the structure of the conditional independences in base relations given as graphical models help infer new conditional independences in the joined relation. The proposed framework combines concepts from databases, statistics, and graphical models, and aims to initiate new research directions spanning these fields to facilitate powerful data-driven decisions in todays big data world.