This is an appendix to the recent paper of Favacchio and Guardo. In these notes we describe explicitly a minimal bigraded free resolution and the bigraded Hilbert function of a set of 3 fat points whose support is an almost complete intersection (ACI) in $mathbb{P}^1timesmathbb{P}^1.$ This solve the interpolation problem for three points with an ACI support.
In this paper we investigate special arrangements of lines in multiprojective spaces. In particular, we characterize codimensional two arithmetically Cohen-Macaulay (ACM) varieties in $mathbb P^1timesmathbb P^1timesmathbb P^1$, called varieties of lines. We also describe their ACM property from combinatorial algebra point of view.
Let $X$ be a set of $K$-rational points in $P^1 times P^1$ over a field $K$ of characteristic zero, let $Y$ be a fat point scheme supported at $ X$, and let $R_Y$ be the bihomogeneus coordinate ring of $Y$. In this paper we investigate the module of Kaehler differentials $Omega^1_{R_Y/K}$. We describe this bigraded $R_Y$-module explicitly via a homogeneous short exact sequence and compute its Hilbert function in a number of special cases, in particular when the support $X$ is a complete intersection or an almost complete intersection in $P^1 times P^1$. Moreover, we introduce a Kaehler different for $Y$ and use it to characterize reduced fat point schemes in $P^1 times P^1$ having the Cayley-Bacharach property.
For a reduced hypersurface $V(f) subseteq mathbb{P}^n$ of degree $d$, the Castelnuovo-Mumford regularity of the Milnor algebra $M(f)$ is well understood when $V(f)$ is smooth, as well as when $V(f)$ has isolated singularities. We study the regularity of $M(f)$ when $V(f)$ has a positive dimensional singular locus. In certain situations, we prove that the regularity is bounded by $(d-2)(n+1)$, which is the degree of the Hessian polynomial of $f$. However, this is not always the case, and we prove that in $mathbb{P}^n$ the regularity of the Milnor algebra can grow quadratically in $d$.
A projectively normal Calabi-Yau threefold $X subseteq mathbb{P}^n$ has an ideal $I_X$ which is arithmetically Gorenstein, of Castelnuovo-Mumford regularity four. Such ideals have been intensively studied when $I_X$ is a complete intersection, as well as in the case where $X$ is codimension three. In the latter case, the Buchsbaum-Eisenbud theorem shows that $I_X$ is given by the Pfaffians of a skew-symmetric matrix. A number of recent papers study the situation when $I_X$ has codimension four. We prove there are 16 possible betti tables for an arithmetically Gorenstein ideal $I$ with $mathrm{codim}(I)=4=mathrm{reg}(I)$, and that exactly 8 of these occur for smooth irreducible nondegenerate threefolds. We investigate the situation in codimension five or more, obtaining examples of $X$ with $h^{p,q}(X)$ not among those appearing for $I_X$ of lower codimension or as complete intersections in toric Fano varieties. A key tool in our approach is the use of inverse systems to identify possible betti tables for $X$.
This paper considers the moduli spaces (stacks) of parabolic bundles (parabolic logarithmic flat bundles with given spectrum, parabolic regular Higgs bundles) with rank 2 and degree 1 over $mathbb{P}^1$ with five marked points. The stratification structures on these moduli spaces (stacks) are investigated. We confirm Simpsons foliation conjecture of moduli space of parabolic logarithmic flat bundles for our case.
Giuseppe Favacchio
,Elena Guardo
.
(2017)
.
"The interpolation problem for a set of three fat points in $mathbb{P}^1timesmathbb{P}^1$"
.
Giuseppe Favacchio
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا