Do you want to publish a course? Click here

Exact sampling hardness of Ising spin models

122   0   0.0 ( 0 )
 Added by Michael Foss-Feig
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the complexity of classically sampling from the output distribution of an Ising spin model, which can be implemented naturally in a variety of atomic, molecular, and optical systems. In particular, we construct a specific example of an Ising Hamiltonian that, after time evolution starting from a trivial initial state, produces a particular output configuration with probability very nearly proportional to the square of the permanent of a matrix with arbitrary integer entries. In a similar spirit to BosonSampling, the ability to sample classically from the probability distribution induced by time evolution under this Hamiltonian would imply unlikely complexity theoretic consequences, suggesting that the dynamics of such a spin model cannot be efficiently simulated with a classical computer. Physical Ising spin systems capable of achieving problem-size instances (i.e. qubit numbers) large enough so that classical sampling of the output distribution is classically difficult in practice may be achievable in the near future. Unlike BosonSampling, our current results only imply hardness of exact classical sampling, leaving open the important question of whether a much stronger approximate-sampling hardness result holds in this context. As referenced in a recent paper of Bouland, Mancinska, and Zhang (A. Bouland, L. Mancinska, and X. Zhang, CCC 2016, pp. 28:1-28:33), our result completes the sampling hardness classification of two-qubit commuting Hamiltonians.



rate research

Read More

In this work we proof that boson sampling with $N$ particles in $M$ modes is equivalent to short-time evolution with $N$ excitations in an XY model of $2N$ spins. This mapping is efficient whenever the boson bunching probability is small, and errors can be efficiently postselected. This mapping opens the door to boson sampling with quantum simulators or general purpose quantum computers, and highlights the complexity of time-evolution with critical spin models, even for very short times.
We show that the nonlinear stochastic dynamics of a measurement-feedback-based coherent Ising machine (MFB-CIM) in the presence of quantum noise can be exploited to sample degenerate ground and low-energy spin configurations of the Ising model. We formulate a general discrete-time Gaussian-state model of the MFB-CIM which faithfully captures the nonlinear dynamics present at and above system threshold. This model overcomes the limitations of both mean-field models, which neglect quantum noise, and continuous-time models, which assume long photon lifetimes. Numerical simulations of our model show that when the MFB-CIM is operated in a quantum-noise-dominated regime with short photon lifetimes (i.e., low cavity finesse), homodyne monitoring of the system can efficiently produce samples of low-energy Ising spin configurations, requiring many fewer roundtrips to sample than suggested by established high-finesse, continuous-time models. We find that sampling performance is robust to, or even improved by, turning off or altogether reversing the sign of the parametric drive, but performance is critically reduced in the absence of optical nonlinearity. For the class of MAX-CUT problems with binary-signed edge weights, the number of roundtrips sufficient to fully sample all spin configurations up to the first-excited Ising energy, including all degeneracies, scales as $1.08^N$. At a problem size of $N = 100$ with a few dozen (median of 20) such desired configurations per instance, we have found median sufficient sampling times of $6times10^6$ roundtrips; in an experimental implementation of an MFB-CIM with a 10 GHz repetition rate, this corresponds to a wall-clock sampling time of 0.6 ms.
We present an application of the Extended Stochastic Liouville Equation (ESLE) Phys. Rev. B 95, 125124, which gives an exact solution for the reduced density matrix of an open system surrounded by a harmonic heat bath. This method considers the extended system (the open system and the bath) being thermally equilibrated prior to the action of a time dependent perturbation, as opposed to the usual assumption that system and bath are initially partitioned. This is an exact technique capable of accounting for arbitrary parameter regimes of the model. Here we present our first numerical implementation of the method in the simplest case of a Caldeira-Leggett representation of the bath Hamiltonian, and apply it to a spin-Boson system driven from coupled equilibrium. We observe significant behaviours in both the transient dynamics and asymptotic states of the reduced density matrix not present in the usual approximation.
The dynamical behavior of a star network of spins, wherein each of N decoupled spins interact with a central spin through non uniform Heisenberg XX interaction is exactly studied. The time-dependent Schrodinger equation of the spin system model is solved starting from an arbitrary initial state. The resulting solution is analyzed and briefly discussed.
198 - Ramis Movassagh 2018
One-parameter interpolations between any two unitary matrices (e.g., quantum gates) $U_1$ and $U_2$ along efficient paths contained in the unitary group are constructed. Motivated by applications, we propose the continuous unitary path $U(theta)$ obtained from the QR-factorization [ U(theta)R(theta)=(1-theta)A+theta B, ] where $U_1 R_1=A$ and $U_2 R_2=B$ are the QR-factorizations of $A$ and $B$, and $U(theta)$ is a unitary for all $theta$ with $U(0)=U_1$ and $U(1)=U_2$. The QR-algorithm is modified to, instead of $U(theta)$, output a matrix whose columns are proportional to the corresponding columns of $U(theta)$ and whose entries are polynomial or rational functions of $theta$. By an extension of the Berlekamp-Welch algorithm we show that rational functions can be efficiently and exactly interpolated with respect to $theta$. We then construct probability distributions over unitaries that are arbitrarily close to the Haar measure. Demonstration of computational advantages of NISQ over classical computers is an imperative near-term goal, especially with the exuberant experimental frontier in academia and industry (e.g., IBM and Google). A candidate for quantum computational supremacy is Random Circuit Sampling (RCS), which is the task of sampling from the output distribution of a random circuit. The aforementioned mathematical results provide a new way of scrambling quantum circuits and are applied to prove that exact RCS is $#P$-Hard on average, which is a simpler alternative to Bouland et als. (Dis)Proving the quantum supremacy conjecture requires approximate average case hardness; this remains an open problem for all quantum supremacy proposals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا